Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
题意:有两个单词,可以选择以下三种操作:增、删、替换一个字符,问需要经过多少次操作才能把第一个单词变为第二个
思路:dp
f[i][j] 表示word1[1..j]到word2[1..i]的最小编辑距离
if word2[i] == word1[j], f[i][j] = f[i - 1][j - 1]
else f[i][j] = min{f[i - 1][j - 1], f[i][j - 1], f[i - 1][j]} + 1
复杂度:时间O(n^2),空间O(n^2)
int minDistance(string word1, string word2) {
if(word1.empty()) return word2.size();
if(word2.empty()) return word1.size();
vector<vector<int> > dp(word1.size() + 1, vector<int>(word2.size() + 1, 0)); //
//初始化
for(int i = 0; i <= word1.size(); ++i) dp[i][0] = i;
for(int j = 0; j <= word2.size(); ++j) dp[0][j] = j;
//迭代
for(int i = 0; i < word1.size(); ++i){
for(int j = 0; j < word2.size(); ++j){
int ii = i + 1, jj = j + 1;
if(word1[i] == word2[j]) dp[ii][jj] = dp[ii - 1][jj - 1];
else dp[ii][jj] = min(min(dp[ii][jj - 1], dp[ii - 1][jj]), dp[ii - 1][jj - 1]) + 1;
}
}
return dp[word1.size()][word2.size()];
}