Python实现深度优先遍历(DFS)和广度优先遍历(BFS)

一,简介

深度优先遍历(Depth First Search, 简称 DFS) 与广度优先遍历(Breath First Search)是图论中两种非常重要的算法,生产上广泛用于拓扑排序,寻路(走迷宫),搜索引擎,爬虫等,也频繁出现在 leetcode,高频面试题中。

二,深度优先遍历

主要思路是从图中一个未访问的顶点 V 开始,沿着一条路一直走到底,然后从这条路尽头的节点回退到上一个节点,再从另一条路开始走到底…,不断递归重复此过程,直到所有的顶点都遍历完成,它的特点是不撞南墙不回头,先走完一条路,再换一条路继续走。

树是图的一种特例(连通无环的图就是树),接下来我们来看看树用深度优先遍历该怎么遍历。

在这里插入图片描述

  1. 我们从根节点 1 开始遍历,它相邻的节点有 2,3,4,先遍历节点 2,再遍历 2 的子节点 5,然后再遍历 5 的子节点 9。
    在这里插入图片描述
  2. 上图中一条路已经走到底了(9是叶子节点,再无可遍历的节点),此时就从 9 回退到上一个节点 5,看下节点 5 是否还有除 9 以外的节点,没有继续回退到 2,2 也没有除 5 以外的节点,回退到 1,1 有除 2 以外的节点 3,所以从节点 3 开始进行深度优先遍历,如下:在这里插入图片描述
  3. 同理从 10 开始往上回溯到 6, 6 没有除 10 以外的子节点,再往上回溯,发现 3 有除 6 以外的子点 7,所以此时会遍历 7。
    在这里插入图片描述
  4. 从 7 往上回溯到 3, 1,发现 1 还有节点 4 未遍历,所以此时沿着 4, 8 进行遍历,这样就遍历完成了。
    完整的节点的遍历顺序如下(节点上的的蓝色数字代表):
    在这里插入图片描述
# 深度遍历目录
import os,collections
path = r'D:\test\work_file\meishi'

def GetAllDirDeep(path):
    stack = []
    stack.append(path)
    # 处理栈,当栈为空时结束循环
    while len(stack) != 0:
        # 从栈里取出数据
        DirPath = stack.pop()
        #print("DirPath =",DirPath)
        # 目录下所有文件
        FileList = os.listdir(DirPath)
        #print("FileList =",FileList)
        # 循环处理每个文件
        for FileName in FileList:
            FileAbsPath = os.path.join(DirPath,FileName)
            #print("FileName ",FileName)
            if os.path.isfile(FileAbsPath) == True:
                print("是文件",FileAbsPath)
            else:
                print("是目录",FileAbsPath)
                stack.append(FileAbsPath)

GetAllDirDeep(path)

三,广度优先遍历

广度优先遍历,指的是从图的一个未遍历的节点出发,先遍历这个节点的相邻节点,再依次遍历每个相邻节点的相邻节点。

上文所述树的广度优先遍历动图如下,每个节点的值即为它们的遍历顺序。所以广度优先遍历也叫层序遍历,先遍历第一层(节点 1),再遍历第二层(节点 2,3,4),第三层(5,6,7,8),第四层(9,10)。

在这里插入图片描述
深度优先遍历用的是栈,而广度优先遍历要用队列来实现,我们以下图二叉树为例来看看如何用队列来实现广度优先遍历。
在这里插入图片描述

import os,collections
path = r'D:\test\work_file\meishi'

# 广度遍历目录
def GetAllDirScope(path):
    queue = collections.deque()
    # 进队
    queue.append(path)
    print("queue =",queue)
    while len(queue) != 0:
        # 出队数据
        FilePath = queue.popleft()
        #print(FilePath)
        # 找出所有的文件
        FileNameList = os.listdir(FilePath)
        for FileName in FileNameList:
            #print(FileName)
            FileAbsPath = os.path.join(FilePath,FileName)
            if os.path.isfile(FileAbsPath) == True:
                print("是文件",FileAbsPath)
            else:
                print("是目录",FileAbsPath)
                queue.append(FileAbsPath)
GetAllDirScope(path)

四,使用递归方式遍历

import os,collections
path = r'D:\test\work_file\meishi'

def GetAllDir(path):
    FileList = os.listdir(path)
    for FileName in FileList:
        NewFileName = path + "\\" + FileName
        print("NewFileName =",NewFileName)
        if os.path.isdir(NewFileName):
            print("是目录")
            GetAllDir(NewFileName)
        else:
            print("是文件")
GetAllDir(path)
二叉树的广度优先遍历BFS)可以使用队列实现,具体步骤如下: 1. 创建一个空队列,并将根节点入队。 2. 当队列不为空时,执行以下操作: - 出队一个节点,将其值存储或打印。 - 将出队节点的左子节点入队(如果存在)。 - 将出队节点的右子节点入队(如果存在)。 3. 重复步骤2,直到队列为空。 下面是一个Python实现的示例代码: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right def bfs(root): if not root: return [] result = [] queue = [root] while queue: node = queue.pop(0) result.append(node.val) if node.left: queue.append(node.left) if node.right: queue.append(node.right) return result ``` 对于深度优先遍历DFS),有两种常用的方法:前序遍历、中序遍历和后序遍历。下面以前序遍历为例进行解释。 前序遍历的顺序是:根节点 -> 左子树 -> 右子树。具体实现步骤如下: 1. 创建一个空列表,用于存储遍历结果。 2. 定义一个辅助函数,接收一个节点作为参数: - 若节点为空,返回。 - 将节点的值存储或打印。 - 递归调用辅助函数遍历节点的左子树。 - 递归调用辅助函数遍历节点的右子树。 3. 调用辅助函数,将根节点作为参数传入。 下面是一个Python实现的示例代码: ```python def dfs(root): if not root: return [] result = [] def helper(node): if not node: return result.append(node.val) helper(node.left) helper(node.right) helper(root) return result ``` 这样,你就可以使用这两个函数来实现二叉树的广度优先遍历深度优先遍历了。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

西门一刀

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值