自然语言处理之语音识别:Deep Neural Networks (DNN):DNN模型训练与优化

自然语言处理之语音识别:DNN基础理论
DNN模型结构介绍
在深度学习领域,深度神经网络(Deep Neural Networks, DNN)是一种具有多层隐藏层的神经网络模型。与传统的浅层神经网络相比,DNN能够学习到数据的更复杂、更抽象的特征表示,这在语音识别、图像识别、自然语言处理等任务中表现出了显著的优势。
DNN的层次结构
DNN的基本结构由输入层、多个隐藏层和输出层组成。每个隐藏层由多个神经元构成,神经元之间通过权重(weights)和偏置(biases)连接。在语音识别中,输入层通常接收的是语音信号的特征向量,如梅尔频率倒谱系数(MFCCs);输出层则可能输出一系列的音素或单词的概率分布。
示例:构建一个简单的DNN模型
假设我们正在构建一个用于语音识别的DNN模型,该模型有3个隐藏层,每个隐藏层有128个神经元。以下是一个使用Python和Keras库构建此模型的示例代码:
订阅专栏 解锁全文
1056

被折叠的 条评论
为什么被折叠?



