自然语言处理之命名实体识别:Bi-LSTM-CRF:命名实体识别NER概述

自然语言处理之命名实体识别:Bi-LSTM-CRF:命名实体识别NER概述

在这里插入图片描述

自然语言处理之命名实体识别NER简介

1.1 什么是命名实体识别

命名实体识别(Named Entity Recognition,简称NER)是自然语言处理(NLP)领域中的一个关键任务,主要目标是从文本中识别并分类出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。这些实体在文本中往往具有特定的上下文意义,对理解文本内容至关重要。

例如,给定句子“张三于2023年访问了纽约,并在联合国总部发表了演讲。”,命名实体识别的任务是识别出“张三”是人名,“2023年”是时间,“纽约”是地名,“联合国总部”是组织机构名。

1.2 NER在NLP中的重要性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值