自然语言处理之命名实体识别:Bi-LSTM-CRF模型训练与优化

自然语言处理之命名实体识别:Bi-LSTM-CRF模型训练与优化
1. 命名实体识别简介
1.1 NER的基本概念
命名实体识别(Named Entity Recognition,简称NER)是自然语言处理(NLP)领域的一个重要任务,旨在从文本中识别出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。这些实体在文本中往往具有特定的上下文意义,是信息抽取、问答系统、机器翻译等任务的基础。
1.2 NER的应用场景
命名实体识别在多个场景中发挥着关键作用: