自然语言处理之命名实体识别:Bi-LSTM-CRF在信息抽取中的应用

自然语言处理之命名实体识别:Bi-LSTM-CRF在信息抽取中的应用

在这里插入图片描述

1. 命名实体识别简介

1.1 命名实体识别的基本概念

命名实体识别(Named Entity Recognition, NER)是自然语言处理(NLP)领域的一个重要任务,主要目标是从文本中识别出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。这些实体在文本中往往具有特定的上下文意义,是信息抽取、问答系统、机器翻译等任务的基础。

1.2 命名实体识别在信息抽取中的重要性

信息抽取(Information Extraction, IE)是从非结构化或半结构化文本中自动抽取结构化信息的过程。命名实体识别作为信息抽取的第一步,其准确性直接影响后续任务的性能。例如,在新闻文本中,准确识别出人名和组织名可以帮助构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值