自然语言处理之命名实体识别:Bi-LSTM-CRF在信息抽取中的应用
1. 命名实体识别简介
1.1 命名实体识别的基本概念
命名实体识别(Named Entity Recognition, NER)是自然语言处理(NLP)领域的一个重要任务,主要目标是从文本中识别出具有特定意义的实体,如人名、地名、组织机构名、时间、货币等。这些实体在文本中往往具有特定的上下文意义,是信息抽取、问答系统、机器翻译等任务的基础。
1.2 命名实体识别在信息抽取中的重要性
信息抽取(Information Extraction, IE)是从非结构化或半结构化文本中自动抽取结构化信息的过程。命名实体识别作为信息抽取的第一步,其准确性直接影响后续任务的性能。例如,在新闻文本中,准确识别出人名和组织名可以帮助构