【动态规划】-【基础题目01】-509斐波那契数,70爬楼梯

本文深入讲解了动态规划解决经典问题,包括斐波那契数列的递推、爬楼梯的不同策略(1阶/2阶上法和m步上楼梯),以及最小花费爬楼梯的优化算法。通过实例演示和代码实现,帮助理解动态规划的核心思想和空间时间复杂度优化。
摘要由CSDN通过智能技术生成

benwen 本文写动态规划的第一类基础题目,需要注意的是:

递归公式的推导,五步曲!!!扩展的m步上楼梯

目录

509. 斐波那契数

70. 爬楼梯

746. 使用最小花费爬楼


509. 斐波那契数

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

思路:

我们用五步曲进行分析:

(1)dp数组下标的含义:显然下标 i 代表第 i 个数,F(i)代表第 i 个数的值;

(2)递推公式:dp[i]=dp[i-1]+dp[i-2]

(3)初始化:数列从0和1开始,那么第0个为0,第1个为1,题意也给出来了,后面就是dp[i]=dp[i-1]+dp[i-2];

(4)遍历顺序:从0开始,从前到后,从小到大,

代码:

class Solution {
public:
    int fib(int n) {
        vector<int> dp;
        dp.push_back(0);
        dp.push_back(1);
        for(int i=2;i<=n;i++){
            int tmp=dp[i-1]+dp[i-2];
            dp.push_back(tmp);
        }
        return dp[n];     
    }
};

同时需要注意,上面我们维护了整个序列,那么时间复杂度O(n),空间复杂度O(n)。但其实我们只需要每次记录前面两个数字就够了,于是变成下面:

class Solution {
public:
    int fib(int n) {
        if(n<=1)
           return n;
        int t1=0,t2=1;
        int t=t1+t2;
        for(int i=2;i<=n;i++){
            t=t1+t2;
            t1=t2;
            t2=t;
        }
        return t;     
    }
};

此时空间复杂度变为O(1)

当然此题目还可以使用递归来做,但空间复杂度为O(n),时间复杂度O(2^n),指数级,因为是树状。


70. 爬楼梯

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

  • 输入: 2
  • 输出: 2
  • 解释: 有两种方法可以爬到楼顶。
    • 1 阶 + 1 阶
    • 2 阶

示例 2:

  • 输入: 3
  • 输出: 3
  • 解释: 有三种方法可以爬到楼顶。
    • 1 阶 + 1 阶 + 1 阶
    • 1 阶 + 2 阶
    • 2 阶 + 1 阶

思路:

五步法:

(1)dp数组下标含义:i表示楼梯级数,dp[i]表示当前级数为 i 的楼梯有多少种上法;

(2)递推公式:由于每次只能上1或者2级,那么dp[i]=dp[i-1]+dp[i-2],同斐波那契;

(3)初始化:dp[1]=1,dp[2]=2,对于dp[0],第0级台阶有一种上法就是不动,而不是0,故dp[0]=1;

(4)遍历顺序:从小到大;同时遍历应该从3开始,到n结束;

代码:

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) 
            return n; 
        vector<int> dp(n + 1);
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { // 注意i是从3开始
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n];
    }
};

同样可以用相同的方法进行简化。


扩展:

这道题目还可以继续深化,如果一步一个台阶,两个台阶,三个台阶,直到 m个台阶,有多少种方法爬到n阶楼顶。

这个其实也不难想,拿刚刚那个来说:一次只能上1 2级,那么对于当前 i 级,可能最后一步是1,或者2,那么只有两种情况,所以就是dp[i]=dp[i-1]+dp[i-2];

那么对于最后一次台阶有m种可能的上法,那么就是假设最后一次上了1级,+dp[i-1],最后一次上了2级,+dp[i-2],最后一次上了3级,+dp[i-3],最后一次上了m级,+dp[i-m],所以当可以上m级台阶时,dp[i]=dp[i-1]+dp[i-2]+dp[i-3]+……+dp[i-m]。

需要详细考虑这个递推公式到底怎么来的!!

代码如下:

class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) 
            return n; 
        vector<int> dp(n + 1);
        dp[0] = 1;
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; i++) { 
            for(int j=1;j<=m;j++)
                if(i-j>=0) //注意,初始化了dp[0],这里是>=0
                    dp[i] += dp[i - j];
        }
        return dp[n];
    }
};

746. 使用最小花费爬楼梯

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当你爬上一个阶梯你都要花费对应的体力值,一旦支付了相应的体力值,你就可以选择向上爬一个阶梯或者爬两个阶梯。

请你找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

输入:cost = [10, 15, 20] 输出:15 解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。  示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 输出:6 解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费6。

思路:

动态规划五步法:

(1)数组及下标含义:dp[i]表示需要上到第 i 阶要耗费的最小体力;

(2)递推公式:由于一次只能上1 2级台阶,那么dp[i]=min( dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);

(3)初始化:题目所知,得到dp[1]=dp[0]=0,然后循环的时候从i=2开始。

(4)递归顺序:从小到大;

代码:

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n=cost.size();
        if (n <= 1) 
            return 0; 
        vector<int> dp(n + 1);
        dp[0] = 0;
        dp[1] = 0;
        for (int i = 2; i <= n; i++)  // 注意i是从3开始
            dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]);
        return dp[n];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值