『六道』
码龄9年
关注
提问 私信
  • 博客:79,331
    问答:45
    动态:449
    视频:46
    79,871
    总访问量
  • 45
    原创
  • 383,477
    排名
  • 35
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:浙江省
  • 加入CSDN时间: 2015-08-27
博客简介:

创业者

查看详细资料
个人成就
  • 获得26次点赞
  • 内容获得7次评论
  • 获得106次收藏
创作历程
  • 33篇
    2023年
  • 3篇
    2022年
  • 2篇
    2021年
  • 3篇
    2020年
  • 2篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • 数据挖掘
    7篇
  • 情感分析
    2篇
  • 数据采集
    4篇
  • 程序员
    1篇
  • 租房
    1篇
  • 网络安全
    2篇
  • 元宇宙
    1篇
  • 交友
    1篇
  • 数据安全
    1篇
  • 黑客,
  • 黑客
    1篇
  • 设计师朱怀玉
  • 中国黑客六道
    3篇
兴趣领域 设置
  • 人工智能
    数据挖掘目标检测机器学习人工智能深度学习神经网络知识图谱智慧城市图像处理数据分析集成学习AI作画
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

179人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

LSTM+CRF模型

在序列标注任务中,LSTM用于对输入序列进行特征提取和上下文建模,而CRF用于将LSTM得到的特征序列映射为最终的标签序列。通过输入数据和上一个隐藏状态,计算输入门的开关值,并将其乘以输入数据,得到要更新到细胞状态的部分。通过输入门、遗忘门和输出门的计算,LSTM能够有效地捕捉到序列数据中的长期依赖关系,从而更好地处理序列任务,比如语言建模、机器翻译、文本生成。与传统的基于规则或者序列标注算法相比,CRF模型能够通过学习标签之间的关系,更好的适应任务特征和上下文信息,会提升序列标注任务的性能。
原创
发布博客 2023.10.02 ·
829 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

作为数据分析师,如何能把AI工具和数据分析工作更好的结合?

做为数据分析师,如果能够学会把AI工具应用到实际的数据分析工作当中,可以把一些重复性很强的工作交给AI来完成,这样数据分析师在提升效率的过程中能够去有更多的时间考虑具有创意的工作。数据分析师可以根据罗列出来需要优化掉的步骤,去考虑针对性的选择使用某些AI工具(这里需要注明:有些重复工作并不是只有AI能够完成,能够减少重复工作的都是可以整理使用)。小公司永远是最多的,而这些小公司的数据分析工作是由公司下发需求,爬虫工程师根据项目去编写爬虫框架,完成外部与内部的数据自动爬取工作。
原创
发布博客 2023.09.09 ·
447 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MathGPT是什么,MathGPT与ChatGPT的区别是什么,MathGPT十大应用场景

与ChatGPT相比,MathGPT主要关注数学领域而非通用性的自然语言理解,因此其训练语料库和预测任务都与数学有关,同时还加入了数学专有的结构和语法规则,以更好地服从数学领域的特点。MathGPT是一种基于自然语言处理技术的数学语言模型,其目的是通过自动化生成数学公式、证明和解题步骤等来辅助数学学习和研究。5. 数学学者研究支持:MathGPT是数学领域研究的重要工具之一,可以提供数学领域的思路和可能解决方案。4. 数学竞赛辅助:MathGPT可以训练和支持数学竞赛选手,帮助他们更好地应对数学竞赛。
原创
发布博客 2023.05.09 ·
3622 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

KNIME是什么软件

要在KNIME中进行数据可视化,请使用内置的可视化工具,在节点库中搜索“Interactive Views”或“Views”,选择适当的视图类型(例如散点图、柱状图等),然后将其拖放到工作流程中。接下来,将数据输入到视图节点中,并配置视图节点以呈现所需的数据。要制作饼图,请使用KNIME的内置可视化工具之一,例如“Pie Chart”节点。要保存KNIME工作流,请打开要保存的工作流程并选择“文件”>“另存为”。在“另存为”窗口中,选择要保存的位置和文件名,并单击“保存”。knime数据可视化怎么做。
原创
发布博客 2023.05.08 ·
423 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

模式识别是什么意思

模式识别技术可以应用于人脸识别、手写体识别、图像识别、语音识别、声纹识别、文本分类、行为分析、医学诊断、工业控制等多个领域。模式识别是一种通过分析数据特征、模型、算法等手段,从数据中寻找规律、发现隐藏的模式或结构的技术。通常是从某些对象、场景、过程等方面入手,对数据进行处理,以便于对这些对象、场景、过程进行分类、检测、识别、分割、分析等目的。7. 行为分析:通过分析行为模式的规律、节奏、频率等特征,对用户的行为进行分析和预测。6. 文本分类:通过分析文本中的单词、短语、句子等特征,对文本进行分类或判定。
原创
发布博客 2023.05.02 ·
1093 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

数据挖掘是做什么的

数据挖掘工具包括商业软件和开源软件两种:商业软件如SAS、SPSS、KNIME等,这些软件功能比较齐全且易上手,但价格昂贵;开源软件如WEKA、RapidMinder、Python等,由于开源软件免费且有着强大的社区支持,因此越来越受到数据挖掘领域的青睐。数据挖掘的方法包括分类、聚类、关联分析、异常检测、预测等等。数据挖掘课程通常包括:数据预处理、特征选择、特征提取、数据规约、分类方法、聚类方法、关联规则挖掘、异常检测等内容。课程还会介绍如何使用一些工具来实现数据挖掘,如WEKA,RapidMiner等。
原创
发布博客 2023.04.23 ·
161 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

StableLM是什么

StableLM使用了一些常用的模型架构,比如LSTM、Transformer等,还使用了一些先进的技术,比如自注意力机制、残差连接等,以提高模型的效果和精度。StableLM是一个基于深度学习的语言模型,旨通过有效地利用同义词、语气和语法结构等上下文信息来纠正非标准、不流畅或不准确的自然语言文本,比如病历、法律文件或用户评论等。除此之外,StableLM还使用了一些特定的技术来处理输入文本,比如词向量、句子嵌入等,以更好地编码输入文本的信息。
原创
发布博客 2023.04.22 ·
179 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AI写作可以写什么,分别有哪些工具

2. Hugging Face Transformers:是一个面向NLP和AI的开源平台,它提供了近百个经过预训练的模型,可以用于生成各种类型的语言文本。1. 开源CLUE-AI社区 智能对话模型large-v3:是目前最为先进的语言模型,可用于生成各种类型的文本,包括文章、自动回复邮件、自动生成代码等。它所生成的文章有时非常类似于人为撰写的文章。6. Snazzy AI:是一种基于AI技术的内容生成工具,它可以自动生成各种类型的文章,如新闻报道、博客文章、广告、推文等。
原创
发布博客 2023.04.22 ·
310 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

AI写作可以干什么

AI写作可以用于自动生成各种类型的文本,例如新闻报道、产品描述、营销文案、科技文章、小说甚至诗歌等。AI写作还可以帮助改善文本的准确性和一致性,同时将作者的情感、语气和风格的因素融入生成的文本。AI写作已经成为现代内容创造的重要工具,广泛用于新闻、媒体、广告、电子商务、出版等领域。AI写作可以帮助节省时间和成本,提高生产效率,特别是对于大量标准化、重复性任务的处理。在商业应用方面,AI写作可以用于增强用户体验,提高客户保留率,增加销售量等。
原创
发布博客 2023.04.22 ·
326 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

低算力大模型是什么

学习低算力大模型的路线包括学习深度学习基础知识、了解不同类型的低算力大模型,学习模型的设计思路和优化策略,熟悉相关工具和框架的使用,以及实践项目和实验,不断提升实际应用能力。低算力大模型是指可以在计算资源较为有限的设备上进行训练和推理的深度学习模型,其设计和优化的重点在于减小模型的参数量和计算复杂度,同时保持较高的精度和泛化能力。低算力大模型的应用场景主要是面向资源受限、计算能力不足的移动设备和嵌入式系统,例如智能手机、智能音箱、智能摄像头、嵌入式芯片等。
原创
发布博客 2023.04.22 ·
311 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

乘客出租出行需求短时预测

CLAB模型是一种空间-时间环境下基于深度学习的乘客流量预测模型,可有效挖掘出租车乘客出行的时空相关性,考虑历史数据流入量对出行需求的影响,从而提高预测准确性。1.时间维度:预测的是短时预测,需要考虑时间尺度较小的历史数据,如每小时的出行量、流量等,也可以考虑天、周等不同时间尺度。2.空间维度:需要考虑出租车乘客出行的空间分布,将城市划分为不同的区域或网格,以区域/网格为单位建立预测模型。3.预测结果输出:将训练好的预测模型用于新数据的预测,输出出租车乘客流量等预测结果。
原创
发布博客 2023.04.20 ·
538 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

新闻主题识别及其热点演化分析流程

7. 可视化呈现:使用可视化工具(如Python中的matplotlib、seaborn等)将数据可视化呈现,如主题分布图、热点演化图等。4. 主题聚类:采用基于聚类算法(如K-means、层次聚类等)的主题聚类方法,将文本数据聚类成不同的主题。6. 热点分析:通过对主题的时间分布、热度分析,识别出当前的热点主题,并随时间推移进行热点演化分析。1. 数据收集:收集与科技新闻相关的大量文本数据,包括新闻报道、评论、社交媒体等。2. 数据预处理:对收集到的文本数据进行清洗、去重、分词、停用词过滤等处理。
原创
发布博客 2023.04.19 ·
342 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

小说情感倾向分析工具

情感分析工具:可以对文本进行情感识别,根据文本中包含的情感信息,将其转化成情感值,通常有积极情感值、消极情感值、中性情感值等,常用的工具有情感词典和机器学习模型。情感标签工具:可以通过文本中的情感信息为文本打上情感标签,这种工具通常会给出多种情感标签,比如喜悦、悲伤、恐惧、愤怒等,常用的工具有LDA、LSTM等。文本分类工具:可以将文本进行高效分类,根据文本的主题和类别进行分类,比如将小说分成言情、武侠、科幻等类别,常用的工具有朴素贝叶斯、卷积神经网络等。
原创
发布博客 2023.04.18 ·
844 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

液态神经网络是什么

其中最核心的技术是“液态计算”,它是将大量的神经元按照一定规则排列在一起,并用随机扰动来控制信号的传递,这样可以让液态神经网络在处理具有时间因素的任务时呈现出良好的性能表现。液态神经网络的优势主要体现在处理具有时间因素的任务方面,如语音识别、动作识别、运动控制、序列预测等。液态神经网络的劣势在于其训练过程相对较为复杂,并且由于液态神经网络结构的特殊性质,需要较多的计算资源来支持训练和测试。液态神经网络是一种新型的神经网络算法,其模拟了大脑中突触的时变行为,使得网络在处理具有时间因素的任务方面效果较好。
原创
发布博客 2023.04.17 ·
1035 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

类脑导航的机理、算法、实现与展望

CBN的实现需要多个技术领域的支持,例如机器学习、神经生物学、计算机科学、计算机视觉和处理技术、导航传感器技术等等。展望方面,CBN的应用将有助于解决传统导航系统的一些问题,例如信号中断、定位不准等等。CBN的研究可以深化人类对于脑与行为的认知,以及神经元与突触的功能和特性,推动相关技术的发展和应用。通过不断的学习和优化,CBN可以逐渐适应复杂的空间环境和复杂的行为决策。与传统导航系统不同的是,CBN借鉴了大脑神经元与突触的工作原理,通过人工神经网络学习和模拟动物的行为,使导航过程更加具有灵活性和适应性。
原创
发布博客 2023.04.14 ·
384 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

跨语言情感分析研究方向

1. 跨语言情感分析是指对不同语言的文本进行情感分析。跨语言情感分析的难点在于处理不同语言之间的词义差异和语法结构差异,以及如何构建跨语言情感词典。研究者可以通过使用机器翻译将不同语言的文本翻译为相同语言,再进行情感分析,或者直接对不同语言的文本进行情感分析。跨语言情感分析仍有许多待解决的问题,如如何构建跨语言情感词典、如何处理不同语言之间词义的差异、如何解决语言难以处理的语法结构等。目前的研究主要集中在构建跨语言情感词典、跨语言情感特征提取以及跨语言情感分类算法的研究上。
原创
发布博客 2023.04.13 ·
325 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

citespace关键词共现分析

CiteSpace是一种数据可视化和分析工具,可以用来分析学术领域的论文、作者、期刊、关键词等信息,并通过可视化方式展示学术研究的趋势与发展。CiteSpace关键词共现分析可以帮助研究者找到文章中高频使用的关键词以及不同关键词之间的相关性。需要注意的是,CiteSpace关键词共现分析仅仅是一个辅助工具,分析结果需要借助研究者的学术背景知识和判断力进行解释。6.对关键词共现网络图进行分析,包括筛选出度中心性较高的节点,找出节点之间的关联性等。4.选择关键词共现分析,设置关键词共现的时间跨度、阈值等参数。
原创
发布博客 2023.04.12 ·
2856 阅读 ·
3 点赞 ·
0 评论 ·
2 收藏

有哪些适合学生党或打工人的AI工具?

8. Newton Mail:一款能够处理多个电子邮件账户的人工智能邮件应用程序,能够帮助用户节省时间。4. Evernote:一种多功能笔记和日历应用程序,能够组织学习和工作材料。9. Otter.ai:一种语音识别应用程序,能够自动转录会议、讲座、采访等。10. Kuriobot:一种机器人教育应用程序,让用户学习编程和机器人技术。2. Duolingo:一款免费的AI语言学习应用程序,适合学习不同语言。3. Quizlet:一种在线学习工具,用于创建、分享和学习闪卡和测试。
原创
发布博客 2023.04.11 ·
14976 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

新词发现方法,新词发现算法有哪些,热词的发现方法,互联网热词挖掘方法

(1)从大数据中抽取:通过抓取互联网上的海量语料,利用统计模型和自然语言处理技术,挖掘新的高频单词或词组,比如Google的Ngram Viewer。(4)热词挖掘:基于特征提取结果,运用机器学习算法和自然语言处理技术,对文本进行分析和挖掘,挖掘出热词和相关热点话题。(2)基于社交媒体的新词发现:通过分析社交媒体平台上的大量用户互动记录,挖掘出新词,比如Twitter的实时搜索。(3)基于词向量的算法:通过对文本数据进行分词,建立文本的向量表示,计算新词与现有词语的相似度,从中挖掘新词。
原创
发布博客 2023.04.02 ·
885 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

智慧商业零售商业模式是什么,智慧商业零售商业模式有那些,智慧零售数据采集维度

其核心是以消费者为中心,通过数据采集、分析和挖掘,提高商品精细化运营、增强线上浏览和线下购买体验、全面提高门店运营效率和营销能力。1. 人脸识别和行为分析:通过人脸识别和行为分析技术,了解消费者的喜好和购买行为,进行个性化推荐和运营。4. 数据分析和营销:通过数据采集和分析,了解消费者需求和市场趋势,进行个性化营销和经营策略制定。3.新零售商业模式:将线上与线下相结合,通过O2O营销等手段,提高用户购物体验和忠诚度。2. 库存和供应链管理:通过RFID等技术监控库存和供应链,提高运营效率和减少成本。
原创
发布博客 2023.04.02 ·
528 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多