对一个DAG图(有向无环图)排序的方法由很多,以下为其中的一种:
1)从DAG图中选择一个没有前驱的结点输出
2)从图中删除该顶点和所有以它为起点的有向边
3)重复1)和2)直到当前的DAG图为空或当前图中不存在无前驱的顶点为止,而后一种情况说明有向图中必然存在环
#include <stdio.h>
#include <stdlib.h>
#define MAXVEXNODE 100
//邻接表结构定义
typedef struct arcnode{ //边表结点
int adjvex; //该弧所指向的顶点位置
struct arcnode *next; //指向下一条弧的指针
}Arcnode;
typedef struct vnode{ //顶点表结点
// int data; 顶点信息,已由下标指定
Arcnode *first; //指向第一条依附该顶点的弧的指针
}Vnode,AdjList[MAXVEXNODE];
typedef struct{
AdjList vertices; //邻接表
int vexnum,arcnum; //图的顶点数和弧数
}AlGraph;
typedef struct{
int data[MAXVEXNODE]; //存放栈中元素
int top;
}SqStack;//顺序栈
int indegree[MAXVEXNODE],print[MAXVEXNODE]; //顶点的入度(初始为0)和输出数组
void InitStack(SqStack &S){
S.top = -1;
}
void Push(SqStack &S,int i){
S.data[++S.top] = i;
}
void Pop(SqStack &S,int &i){
i = S.data[S.top--];
}
bool IsEmpty(SqStack S){
if(S.top == -1)
return true;
else{
return false;
}
}
bool TopologicalSort(AlGraph G){
SqStack S;
int i,count;
Arcnode *p;
InitStack(S); //初始化栈,存储入度为0的顶点
for(i=1;i<=G.vexnum;i++)
if(indegree[i] == 0)
Push(S,i); //将所有入度为0的顶点入栈
count = 0; //计数器,记录当前已经输出的顶点数
while(!IsEmpty(S)){
Pop(S,i);
print[count++] = i;
for(p=G.vertices[i].first;p;p=p->next){
//将所有顶点入度减1,并且将入度为0的顶点压入栈S
if((--indegree[p->adjvex]) == 0)
Push(S,p->adjvex);
}
}
if(count < G.vexnum)
return false;
else{
return true;
}
}
int main()
{
AlGraph G;
Arcnode *p;
int i,v1,v2;
printf("输入DAG图的顶点数和弧数:");
scanf("%d%d",&G.vexnum,&G.arcnum);
for(i=1;i<=G.vexnum;i++)//初始化顶点表
G.vertices[i].first = NULL;
printf("输入弧的尾、头:\n");
for(i=0;i<G.arcnum;i++){
scanf("%d%d",&v1,&v2);
indegree[v2] ++;
//头插法
p = (Arcnode *)malloc(sizeof(Arcnode));
p->next = G.vertices[v1].first;
G.vertices[v1].first = p;
p->adjvex = v2;
}
if(TopologicalSort(G)){
printf("DAG图无环,其拓扑排序为:");
for(i=0;i<G.vexnum;i++)
printf("%3d",print[i]);
printf("\n");
}
else{
printf("DAG图存在环!!!\n");
}
return 0;
}
测试样例: