总结了空中集群机器人的特点:
3-D Flow and Swarm Autonomy: Motion planning and con trol methods for aerial swarms rely on autonomously generated 3-D traffic flows that do not have fixed edges or roads. Real time flight control and swarm operation must also take into account high-fidelity six-degree-of-freedom (6-DOF) flight dy namicmodels,trafficvariations,weather,andothertime-varying operational conditions found in crowded urban environments.
Scalability Through Hierarchy and Multimodality:
Hierarchical approaches are pervasive in both the machine learning and con trol fields for dealing with complexity and high dimensionality (e.g., hierarchical task networks [11], hierarchical tree or lattice networks employed in sequential game theory [12], and sin gular perturbation theory [13], [14]). They are also especially well-suited for aerial robots due to the inherent diversity of time scales in the system.
II. MODELS,STABILITY AND CONTROLLABILITY OF SWARMS
A. Types of Multiagent Systems
In a team, the behavior and strategies of each individual agent seek to explicitly maximize a local objective.
在一个团队中,每个个体的行为和策略都试图明确地最大化一个局部目标。
In contrast to a team, a formation almost always consists of cooperative interactions, and the relationship between the states of the agents is well-defined for objectives such as energy efficiency (e.g., flocks of birds in an aerodynamically optimum V-formation [17]).
与团队相比,编队几乎总是由合作相互作用组成,对于能源效率等目标,代理人状态之间的关系是明确的(例如,处于空气动力学最佳V编队中的鸟群[17])。
A swarm generally refers to a group of sim ilar agents that displays emergent behavior arising from local interactions among the agents
群体通常是指一组相似的智能体,它们表现出由智能体之间的局部交互引起的新行为
B. Models for Swarm Dynamical Systems
关于集群飞行下的流体可视化

关于队形保持

这张图里的方程其实描述的是无人机集群协同控制的核心原理,核心思想是让每个无人机根据邻居的位置/状态调整自己,最终实现整体一致或编队稳定。我来拆解一下关键点,尽量用通俗的语言解释:
一、方程核心含义
方程表达式:
x˙i=j∈Ni∑wij(xj−xi)
- 物理意义:每个无人机 i 的状态变化(比如位置或速度)取决于它和邻居无人机 j 的状态差异。
- 符号解释:
- xi:无人机 i 的状态(如位置坐标)。
- x˙i:状态随时间的变化率(如速度)。
- Ni:无人机 i 的邻居集合(通过传感器或通信能感知到的其他无人机)。
- wij:权重(表示对邻居 j 的信任程度或通信强度)。
举个栗子🌰:
假设无人机 i 发现自己右边的邻居 j 离自己太远(即 xj−xi>0),它会加速向右移动(x˙i>0),反之则减速。通过这种局部调整,整个集群会逐渐趋于一致(比如保持相同速度或间距)。
二、拉普拉斯矩阵(Laplacian Matrix)
方程可以写成矩阵形式:
x˙=−Lx
其中 L 是拉普拉斯矩阵,它的作用是描述无人机之间的连接关系:
- 矩阵构造:
- 对角线元素 Lii=∑jwij(所有邻居权重之和)。
- 非对角线元素 Lij=−wij(如果 j 是 i 的邻居,否则为0)。
- 关键性质:L1n=0,即所有无人机状态相同时(x=c1n),状态不再变化(x˙=0),系统达到稳态。
物理意义:拉普拉斯矩阵把局部交互规则转化为全局动力学行为,比如收敛到一致状态或形成特定编队。
三、通信拓扑与时间变化
-
固定拓扑(L 是常数矩阵):
无人机之间的通信关系固定(比如始终与固定几个邻居通信)。此时系统收敛性取决于 L 的特征值(需满足稳定性条件)。 -
动态拓扑(L(t) 随时间变化):
通信关系可能因障碍物、信号中断等变化(比如邻居集合 Ni(t) 随时间改变)。此时需要分析时变系统的稳定性。
四、与无人机集群的关联
-
编队控制:
通过调整权重 wij 和通信拓扑,可以让无人机集群形成特定队形(如三角形、雁阵)。例如,权重大的邻居对当前无人机影响更大。 -
避障与一致性:
如果某个无人机检测到障碍物,可以通过临时改变邻居集合 Ni 或权重 wij 实现避障,同时保持整体稳定。 -
收敛性分析:
通过拉普拉斯矩阵的特征值(如第二小特征值代表收敛速度),可以判断集群能否达成一致,或需要多长时间达成。
还有对于任务分区域的算法
核心思想
这段描述的是如何将复杂环境划分成多个“功能区域”(functional bins),并基于这些区域设计无人机集群的任务分配和路径规划策略。类似快递分拣仓库划分不同区域,每个区域只能容纳有限机器人。
关键概念拆解
1. Functional Bins(功能区域)
- 定义:将任务环境划分为多个逻辑区域(例如:战区中的关键据点、仓库中的货架区、城市中的充电站)。
- 作用:
- 每个区域(bin)有最大容量限制(比如区域1最多容纳3架无人机,区域2最多容纳5架)。
- 简化路径规划和任务分配的复杂度(只需关注区域间的转移,而非具体坐标)。
举个栗子🌰:
假设战场被划分为5个据点(bins),每个据点最多停放2架无人机(容量限制)。现在有10架无人机需要分配到这些据点执行任务。
C. Physics-Based Models for Robotic Agents
集群系统的欧拉-拉格朗日方程:

符号解释与物理意义
1. 广义状态 qi
- 定义:描述机器人i位姿的广义坐标,可以是:
- 机械臂的关节角度(如θ1,θ2,...)
- 无人机的位置+姿态(如x,y,z,ϕ,θ,ψ)
- 轮式机器人的轮子转角+车身位置
- 举例🌰:
四旋翼无人机的qi=[x,y,z,ϕ,θ,ψ]T(位置+欧拉角)。
2. 惯性矩阵 Mi(qi)
- 物理意义:描述机器人在当前位姿下的“惯性”(质量分布+转动惯量)。
- 类似牛顿定律中的质量m,但扩展到高维(矩阵形式)。
- 举例🌰:
机械臂伸展时,末端惯性大(Mi对角元素大);收缩时惯性小。
3. 科里奥利力与离心力项 Ci(qi,q˙i)q˙i
- 物理意义:由机器人运动产生的“虚拟力”:
- 离心力(旋转时向外甩的力,如旋转的摩天轮)
- 科里奥利力(非惯性系中的偏转力,如北半球的台风旋转方向)
- 举例🌰:
无人机快速横滚(ϕ˙大)时,会产生离心力,需电机额外出力补偿。
4. 重力项 gi(qi)
- 物理意义:重力对机器人的作用(如机械臂下垂趋势)。
- 与位姿相关(例如机械臂抬高时重力势能大)。
- 举例🌰:
起重机吊起重物时,重力项gi向下,需要电机提供反向力矩。
5. 外部力矩 τi
- 定义:控制输入(如电机力矩、推力)和外部耦合力的总和。
- 包含两部分:
- 自身控制输入:电机/执行器提供的力或力矩。
- 邻居耦合项:来自其他机器人j∈Ni的影响(如集群协同中的交互力)。
- 包含两部分:
- 公式右侧:
τi(qi,q˙i,qd,qj∈Ni,q˙j∈Ni)- qd:期望轨迹(如目标位置/姿态)
- qj∈Ni:邻居机器人的状态(用于协同控制)
公式的直观理解
左边是机器人的“运动阻力”,右边是“驱动力”,两者平衡时方程成立:
惯性力 + 离心力 + 重力=电机出力 + 邻居交互力
举个栗子🌰:
想象你骑自行车:
- 惯性矩阵Mi:车+人的质量越大,加速越难。
- 离心力项Ci:转弯时感觉被甩向外侧。
- 重力项gi:上坡时需要额外用力。
- 外部力矩τi:你踩踏板的力 + 同伴推你的力(协同控制)。
与集群控制的关系
- 耦合项:邻居状态qj∈Ni通过τi影响当前机器人,类似之前提到的拉普拉斯矩阵中的邻居交互。
- 一致性目标:若所有机器人收敛到相同状态(qi=qd且q˙i=0),系统达到平衡。
总结
这个方程是机器人动力学的核心模型,它告诉你:
- 机器人如何运动(左边描述运动惯性、离心效应、重力)。
- 需要施加多少力(右边包括控制输入和邻居影响)。
- 如何设计控制器:通过调整τi中的控制项(如PID或协同算法),让机器人跟踪期望轨迹qd或与邻居同步。
如果有具体应用场景(比如无人机编队或机械臂控制),可以进一步解释如何设计τi! 🚀
好的!我来用两个无人机的例子,分别展示它们完全独立和刚性链接时的动力学方程展开,并结合图中的公式(5)进行解释。
1. 完全独立的两架无人机
假设:
- 无人机1和无人机2之间无物理连接和通信耦合,各自独立跟踪期望轨迹 qd(t)。
- 每架无人机的动力学方程互不影响,耦合项为零。
动力学方程展开(公式(5))
对每架无人机 i=1,2:
Mi(qi)q¨i+Ci(qi,q˙i)q˙i+gi(qi)=τicontrol
- 参数说明:
- qi∈Rn:无人机i的广义状态(如位置+姿态)。
- τicontrol:仅包含自身控制输入(如电机推力/力矩)。
- 无耦合项:τi中不包含邻居状态 qj 或 q˙j。
控制输入设计
假设使用PD控制器跟踪期望轨迹 qd(t):
τicontrol=−Kp(qi−qd)−Kd(q˙i−q˙d)
- Kp,Kd:比例和微分增益矩阵。
- 物理意义:无人机仅根据自身与期望轨迹的误差调整推力。
举例🌰
假设无人机在二维平面运动,状态为 qi=[xi,yi]T(位置):
- 惯性矩阵:Mi=[mi00mi](质量矩阵)。
- 科里奥利力:若忽略空气阻力,Ci=0。
- 重力:平面运动时 gi=0。
- 方程简化为:mi[x¨iy¨i]=−Kp[xi−xdyi−yd]−Kd[x˙i−x˙dy˙i−y˙d]每架无人机独立跟踪目标轨迹,互不影响。
2. 刚性链接的两架无人机
假设:
- 无人机1和2通过刚性杆连接(类似双足机器人的双腿),形成协同系统。
- 两架无人机的状态通过耦合项相互影响。
动力学方程展开(公式(5))
对无人机i=1:
M1(q1)q¨1+C1(q1,q˙1)q˙1

最低0.47元/天 解锁文章
7803

被折叠的 条评论
为什么被折叠?



