文献笔记 - A Survey on Aerial Swarm Robotics

总结了空中集群机器人的特点:

3-D Flow and Swarm Autonomy:   Motion planning and con trol methods for aerial swarms rely on autonomously generated 3-D traffic flows that do not have fixed edges or roads. Real time flight control and swarm operation must also take into account high-fidelity six-degree-of-freedom (6-DOF) flight dy namicmodels,trafficvariations,weather,andothertime-varying operational conditions found in crowded urban environments.

Scalability Through Hierarchy and Multimodality: 

Hierarchical approaches are pervasive in both the machine learning and con trol fields for dealing with complexity and high dimensionality (e.g., hierarchical task networks [11], hierarchical tree or lattice networks employed in sequential game theory [12], and sin gular perturbation theory [13], [14]). They are also especially well-suited for aerial robots due to the inherent diversity of time scales in the system.

II. MODELS,STABILITY AND CONTROLLABILITY OF SWARMS

A. Types of Multiagent Systems

In a team, the behavior and strategies of each individual agent seek to explicitly maximize a local objective.

在一个团队中,每个个体的行为和策略都试图明确地最大化一个局部目标。

In contrast to a team, a formation almost always consists of cooperative interactions, and the relationship between the states of the agents is well-defined for objectives such as energy efficiency (e.g., flocks of birds in an aerodynamically optimum V-formation [17]).

与团队相比,编队几乎总是由合作相互作用组成,对于能源效率等目标,代理人状态之间的关系是明确的(例如,处于空气动力学最佳V编队中的鸟群[17])。

A swarm generally refers to a group of sim ilar agents that displays emergent behavior arising from local interactions among the agents

群体通常是指一组相似的智能体,它们表现出由智能体之间的局部交互引起的新行为

B. Models for Swarm Dynamical Systems

关于集群飞行下的流体可视化

关于队形保持

这张图里的方程其实描述的是无人机集群协同控制的核心原理,核心思想是让每个无人机根据邻居的位置/状态调整自己,最终实现整体一致或编队稳定。我来拆解一下关键点,尽量用通俗的语言解释:


一、方程核心含义

方程表达式:

x˙i​=j∈Ni​∑​wij​(xj​−xi​)

  • 物理意义:每个无人机 i 的状态变化(比如位置或速度)取决于它和邻居无人机 j 的状态差异。
  • 符号解释
    • xi​:无人机 i 的状态(如位置坐标)。
    • x˙i​:状态随时间的变化率(如速度)。
    • Ni​:无人机 i 的邻居集合(通过传感器或通信能感知到的其他无人机)。
    • wij​:权重(表示对邻居 j 的信任程度或通信强度)。

举个栗子🌰:
假设无人机 i 发现自己右边的邻居 j 离自己太远(即 xj​−xi​>0),它会加速向右移动(x˙i​>0),反之则减速。通过这种局部调整,整个集群会逐渐趋于一致(比如保持相同速度或间距)。


二、拉普拉斯矩阵(Laplacian Matrix)

方程可以写成矩阵形式:

x˙=−Lx

其中 L 是拉普拉斯矩阵,它的作用是描述无人机之间的连接关系

  • 矩阵构造
    • 对角线元素 Lii​=∑j​wij​(所有邻居权重之和)。
    • 非对角线元素 Lij​=−wij​(如果 j 是 i 的邻居,否则为0)。
  • 关键性质:L1n​=0,即所有无人机状态相同时(x=c1n​),状态不再变化(x˙=0),系统达到稳态。

物理意义:拉普拉斯矩阵把局部交互规则转化为全局动力学行为,比如收敛到一致状态或形成特定编队。


三、通信拓扑与时间变化
  1. 固定拓扑(L 是常数矩阵)​
    无人机之间的通信关系固定(比如始终与固定几个邻居通信)。此时系统收敛性取决于 L 的特征值(需满足稳定性条件)。

  2. 动态拓扑(L(t) 随时间变化)​
    通信关系可能因障碍物、信号中断等变化(比如邻居集合 Ni​(t) 随时间改变)。此时需要分析时变系统的稳定性。


四、与无人机集群的关联
  1. 编队控制
    通过调整权重 wij​ 和通信拓扑,可以让无人机集群形成特定队形(如三角形、雁阵)。例如,权重大的邻居对当前无人机影响更大。

  2. 避障与一致性
    如果某个无人机检测到障碍物,可以通过临时改变邻居集合 Ni​ 或权重 wij​ 实现避障,同时保持整体稳定。

  3. 收敛性分析
    通过拉普拉斯矩阵的特征值(如第二小特征值代表收敛速度),可以判断集群能否达成一致,或需要多长时间达成。

还有对于任务分区域的算法
核心思想

这段描述的是如何将复杂环境划分成多个“功能区域”​​(functional bins),并基于这些区域设计无人机集群的任务分配和路径规划策略。类似快递分拣仓库划分不同区域,每个区域只能容纳有限机器人。


关键概念拆解
1. ​Functional Bins(功能区域)​
  • 定义:将任务环境划分为多个逻辑区域(例如:战区中的关键据点、仓库中的货架区、城市中的充电站)。
  • 作用
    • 每个区域(bin)有最大容量限制(比如区域1最多容纳3架无人机,区域2最多容纳5架)。
    • 简化路径规划和任务分配的复杂度(只需关注区域间的转移,而非具体坐标)。

举个栗子🌰:
假设战场被划分为5个据点(bins),每个据点最多停放2架无人机(容量限制)。现在有10架无人机需要分配到这些据点执行任务。

C. Physics-Based Models for Robotic Agents

集群系统的欧拉-拉格朗日方程:

符号解释与物理意义
1. ​广义状态 qi​
  • 定义:描述机器人i位姿的广义坐标,可以是:
    • 机械臂的关节角度(如θ1​,θ2​,...)
    • 无人机的位置+姿态(如x,y,z,ϕ,θ,ψ)
    • 轮式机器人的轮子转角+车身位置
  • 举例🌰:
    四旋翼无人机的qi​=[x,y,z,ϕ,θ,ψ]T(位置+欧拉角)。

2. ​惯性矩阵 Mi​(qi​)
  • 物理意义:描述机器人在当前位姿下的“惯性”(质量分布+转动惯量)。
    • 类似牛顿定律中的质量m,但扩展到高维(矩阵形式)。
  • 举例🌰:
    机械臂伸展时,末端惯性大(Mi​对角元素大);收缩时惯性小。

3. ​科里奥利力与离心力项 Ci​(qi​,q˙​i​)q˙​i​
  • 物理意义:由机器人运动产生的“虚拟力”:
    • 离心力​(旋转时向外甩的力,如旋转的摩天轮)
    • 科里奥利力​(非惯性系中的偏转力,如北半球的台风旋转方向)
  • 举例🌰:
    无人机快速横滚(ϕ˙​大)时,会产生离心力,需电机额外出力补偿。

4. ​重力项 gi​(qi​)
  • 物理意义:重力对机器人的作用(如机械臂下垂趋势)。
    • 与位姿相关(例如机械臂抬高时重力势能大)。
  • 举例🌰:
    起重机吊起重物时,重力项gi​向下,需要电机提供反向力矩。

5. ​外部力矩 τi​
  • 定义:控制输入(如电机力矩、推力)和外部耦合力的总和。
    • 包含两部分:
      1. 自身控制输入:电机/执行器提供的力或力矩。
      2. 邻居耦合项:来自其他机器人j∈Ni​的影响(如集群协同中的交互力)。
  • 公式右侧
    τi​(qi​,q˙​i​,qd​,qj∈Ni​​,q˙​j∈Ni​​)
    • qd​:期望轨迹(如目标位置/姿态)
    • qj∈Ni​​:邻居机器人的状态(用于协同控制)

公式的直观理解

左边是机器人的“运动阻力”,右边是“驱动力”,两者平衡时方程成立:

惯性力 + 离心力 + 重力=电机出力 + 邻居交互力

举个栗子🌰:
想象你骑自行车:
  • 惯性矩阵Mi​:车+人的质量越大,加速越难。
  • 离心力项Ci​:转弯时感觉被甩向外侧。
  • 重力项gi​:上坡时需要额外用力。
  • 外部力矩τi​:你踩踏板的力 + 同伴推你的力(协同控制)。

与集群控制的关系
  1. 耦合项:邻居状态qj∈Ni​​通过τi​影响当前机器人,类似之前提到的拉普拉斯矩阵中的邻居交互。
  2. 一致性目标:若所有机器人收敛到相同状态(qi​=qd​且q˙​i​=0),系统达到平衡。

总结

这个方程是机器人动力学的核心模型,它告诉你:

  1. 机器人如何运动​(左边描述运动惯性、离心效应、重力)。
  2. 需要施加多少力​(右边包括控制输入和邻居影响)。
  3. 如何设计控制器:通过调整τi​中的控制项(如PID或协同算法),让机器人跟踪期望轨迹qd​或与邻居同步。

如果有具体应用场景(比如无人机编队或机械臂控制),可以进一步解释如何设计τi​! 🚀

好的!我来用两个无人机的例子,分别展示它们完全独立刚性链接时的动力学方程展开,并结合图中的公式(5)进行解释。


1. 完全独立的两架无人机

假设

  • 无人机1和无人机2之间无物理连接和通信耦合,各自独立跟踪期望轨迹 qd​(t)。
  • 每架无人机的动力学方程互不影响,耦合项为零。
动力学方程展开(公式(5))​

对每架无人机 i=1,2:

Mi​(qi​)q¨​i​+Ci​(qi​,q˙​i​)q˙​i​+gi​(qi​)=τicontrol​

  • 参数说明
    • qi​∈Rn:无人机i的广义状态(如位置+姿态)。
    • τicontrol​:仅包含自身控制输入(如电机推力/力矩)。
    • 无耦合项:τi​中不包含邻居状态 qj​ 或 q˙​j​。
控制输入设计

假设使用PD控制器跟踪期望轨迹 qd​(t):

τicontrol​=−Kp​(qi​−qd​)−Kd​(q˙​i​−q˙​d​)

  • Kp​,Kd​:比例和微分增益矩阵。
  • 物理意义:无人机仅根据自身与期望轨迹的误差调整推力。
举例🌰

假设无人机在二维平面运动,状态为 qi​=[xi​,yi​]T(位置):

  • 惯性矩阵:Mi​=[mi​0​0mi​​](质量矩阵)。
  • 科里奥利力:若忽略空气阻力,Ci​=0。
  • 重力:平面运动时 gi​=0。
  • 方程简化为:mi​[x¨i​y¨​i​​]=−Kp​[xi​−xd​yi​−yd​​]−Kd​[x˙i​−x˙d​y˙​i​−y˙​d​​]每架无人机独立跟踪目标轨迹,互不影响。

2. 刚性链接的两架无人机

假设

  • 无人机1和2通过刚性杆连接(类似双足机器人的双腿),形成协同系统
  • 两架无人机的状态通过耦合项相互影响。
动力学方程展开(公式(5))​

对无人机i=1:

M1​(q1​)q¨​1​+C1​(q1​,q˙​1​)q˙​1​

<think>好的,我现在需要帮助用户找到一篇名为“A Survey on Vision-Based Human Detection in Aerial Scenes”的综述论文的在线资源或下载链接。首先,我应该考虑用户的需求是什么。用户可能在进行相关研究,需要查阅这篇论文来了解空中场景下基于视觉的人体检测的最新进展。接下来,我需要思考如何有效地获取这篇论文。 首先,我应该确认用户提供的论文标题是否正确。可能存在拼写错误或者标题不准确的情况,所以可能需要用户再次确认。不过,假设标题是正确的,接下来要做的就是常规的搜索步骤。通常,学术论文可以通过以下几种途径获取: 1. **学术搜索引擎**:比如Google Scholar、Semantic Scholar、PubMed等。使用准确的标题进行搜索,可能会直接找到论文的PDF链接或者指向出版社的页面。 2. **出版社平台**:如果论文发表在某个期刊或会议上,通常可以在该出版社的官方网站上找到。例如,IEEE Xplore、SpringerLink、Elsevier等。需要确认这篇论文可能发表的出版社,然后进行搜索。 3. **预印本平台**:如arXiv、ResearchGate、Academia.edu。许多作者会在这些平台上上传预印本或已发表的文章,尤其是arXiv在计算机视觉领域非常常用。 4. **联系作者**:如果无法通过公开渠道获取,可以尝试查找论文作者的邮箱,直接发邮件请求副本。学者通常愿意分享他们的研究成果。 5. **机构图书馆或数据库**:如果用户有大学或机构的访问权限,可以通过图书馆的数据库资源进行检索,比如Web of Science、Scopus等。 6. **文献互助平台**:如Sci-Hub,虽然存在版权问题,但在某些情况下可以获取到付费论文的副本。不过需要注意法律和道德问题。 现在,我需要模拟搜索过程。首先,在Google Scholar中输入标题“A Survey on Vision-Based Human Detection in Aerial Scenes”。假设搜索结果中没有直接可用的PDF链接,可能需要检查是否有出版社链接,比如IEEE或Springer。如果论文是会议论文,可能在会议官网上有相关信息。例如,如果发表在CVPR这样的顶级会议,可能可以在会议论文集里找到。 另外,考虑到用户提到的其他引用,比如引用[2]中的arXiv链接,可能这篇综述也存在于arXiv上。但需要确认标题是否一致。有时标题可能会有细微差别,例如年份或作者的差异。如果arXiv没有,可能需要尝试其他平台。 如果上述方法都未能找到,可能需要建议用户检查论文标题的准确性,或者是否存在同主题的其他综述。例如,是否可能标题中的“Aerial Scenes”被替换为“Aerial Images”或“Drone-based Detection”等关键词?或者是否存在更新的综述替代了该篇? 此外,还可以建议用户通过ResearchGate联系作者,或者在相关学术论坛如Reddit的r/MachineLearning或学术群组中询问是否有同行拥有该论文的副本。 最后,需要提醒用户注意版权问题,确保获取论文的方式合法合规。如果论文是开放获取的,直接下载即可;若需要购买,建议通过正规渠道获取。</think>为了获取论文《A Survey on Vision-Based Human Detection in Aerial Scenes》的在线资源或下载链接,可以按照以下步骤操作: 1. **学术搜索引擎检索** 使用Google Scholar、Semantic Scholar或Microsoft Academic搜索完整标题。若论文已公开,通常可直接看到PDF链接或出版社页面。例如,在Google Scholar输入: ``` "A Survey on Vision-Based Human Detection in Aerial Scenes" ``` 若结果中包含链接(如arXiv、IEEE Xplore),可直接访问[^1]。 2. **预印本平台查询** 计算机视觉领域的综述常发布于arXiv。访问[arXiv官网](https://arxiv.org/)并搜索标题关键词,例如: ``` "Human Detection" AND "Aerial Scenes" ``` 若存在相关论文,可下载PDF版本[^2]。 3. **出版社平台搜索** 若论文发表于期刊或会议,尝试在以下平台搜索: - IEEE Xplore(适用于IEEE会议或期刊) - SpringerLink(适用于LNCS等系列) - Elsevier ScienceDirect 例如,在IEEE Xplore中搜索标题,可能需要订阅或单独购买访问权限。 4. **联系作者获取副本** 通过ResearchGate或学术机构页面找到论文作者的邮箱,发送礼貌的邮件请求PDF副本。学者通常愿意分享研究成果。 5. **机构图书馆资源** 若您隶属于高校或研究机构,利用图书馆的数据库(如Web of Science、Scopus)检索论文,并通过机构订阅权限下载。 --- **若上述方法无效,可能的替代方案**: - **检查标题准确性**:确认是否存在拼写差异,例如将“Aerial Scenes”替换为“Drone-Based”或“Remote Sensing”。 - **扩展检索范围**:搜索相关主题的综述,例如: - 《Deep Learning for Human Detection in Aerial Images: A Survey- 《Object Detection in UAV Imagery: A Review》 ---
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值