淮南草的博客

淮南草的博客

卷积神经网络

垂直边缘检测原理: 水平边缘检测原理: sobel scharr过滤矩阵: Padding    卷积运算:其实在深度学习中并不是真正意义上的卷积,而是互相关操作,(真正的卷积还有一个镜像操作) 下图中 n为图像大小,f为卷积大小,p为padding大小,s为步长大小  ...

2018-07-23 08:17:38

阅读数 65

评论数 0

结构化机器学习项目

 调试策略:   准确率和召回率   训练 验证 测试的数据集分布

2018-07-22 08:19:16

阅读数 49

评论数 0

win10 64 配置tensorflow1.9注意事项

我的电脑是win10 64 用的anconda,安装的是tensorflow1.9 gpu+CUDA 9.0 + cudnn v7.0 版本,在安装过程捣鼓了好久,尝试了还几个版本,以下是注意事项: 特别提醒:我的cuda默认装在C:\Users\hcl\AppData\Local\Temp\C...

2018-07-21 18:57:39

阅读数 780

评论数 0

深度学习DeepLearning.ai系列课程学习总结:14. Tensorflow入门

如果还没有安装Tensorflow的可以参考https://blog.csdn.net/zhuisaozhang1292/article/details/81147904 参考:https://www.missshi.cn/api/view/blog/59bbcb46e519f50d040002...

2018-07-21 14:44:52

阅读数 118

评论数 0

吴恩达Coursera深度学习课程 DeepLearning.ai 编程作业——Optimization Methods(2-2)

转至:https://blog.csdn.net/bxg1065283526/article/details/80210359 最终文件看最后附录   Optimization Methods Until now, you’ve always used Gradient Descent t...

2018-07-20 13:49:11

阅读数 82

评论数 0

改善深层神经网络:超参数调试、正则化以及优化 第一周作业3

神经网络反向传播过程中的梯度数值逼近/梯度检查 Gradient Checking Welcome to the final assignment for this week! In this assignment you will learn to implement and use gra...

2018-07-19 17:15:57

阅读数 85

评论数 0

改善深层神经网络:超参数调试、正则化以及优化 第一周作业2

Regularization Welcome to the second assignment of this week. Deep Learning models have so much flexibility and capacity that overfitting can be a s...

2018-07-19 15:55:06

阅读数 76

评论数 0

改善深层神经网络:超参数调试、正则化以及优化 第一周作业1

Initialization 获取数据,其中init_utils的文件在文章最后附录中  主要内容:初始化权重的比较 输入: import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn....

2018-07-19 15:07:24

阅读数 255

评论数 0

python 实现多隐层神经网络 完整版

通过多层神经网络来预测图片二分类,训练数据为h5文件,测试数据为jpg 参考: https://www.cnblogs.com/xushu/p/8686538.html 理解内容转至: https://blog.csdn.net/Koala_Tree/article/details/780...

2018-07-19 09:43:02

阅读数 798

评论数 0

python实现单隐层神经网络

功能:实现用神经网络对多样本数据进行分类训练 改进方法:应该把每次训练好的参数写入txt或json中,可以通过选择是否重新训练来调节 预测速度和 准确率的关系 demo.py import numpy as np import matplotlib.pyplot as plt from p...

2018-07-18 13:30:01

阅读数 294

评论数 0

逻辑回归--预测64*64*3图像 二分类

import numpy as np import matplotlib.pyplot as plt import h5py import scipy from PIL import Image from scipy import ndimage def load_dataset(): ...

2018-07-15 17:59:49

阅读数 332

评论数 0

吴恩达微专业 神经网络和深度学习第二周课后测试

#import numpy as np # def basic_sigmoid(x): # s = 1/(1+np.exp(-x)) # return s # # x = np.array([1,2,3]) # # print(basic_sigmoid(x)) #Sigmo...

2018-07-15 09:00:02

阅读数 174

评论数 0

numpy中multiply,dot,*的区别

import numpy as np11. np.multiply()函数函数作用数组和矩阵对应位置相乘,输出与相乘数组/矩阵的大小一致1.1数组场景A = np.arange(1,5).reshape(2,2) A12array([[1, 2], [3, 4]]) 123B = n...

2018-07-15 08:46:34

阅读数 952

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭