TensorFlow实战Google深度学习框架(一)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhujianing1993/article/details/68956626

第一章  深度学习简介

1.    人工有时候无法很好的抽取实体中的特征,那么是否有自动的方式?是的,深度学习解决的核心问题之一就是自动的将简单的特征合成更加复杂的特征,使用这些组合特征解决问题。

2.    深度学习是机器学习的一个分支,它除了可以学习特征和任务之间的关联以外,还能自动从简单特征中提取更加复杂的特征。

3.    深度学习领域主要关注如何搭建智能的计算机系统,解决人工智能中遇到的问题。计算神经学主要关注如何建立更准确的模型来模拟人脑的工作。

4.    FrankRosenblatt教授在1958年提出了感知机模型(perceptron),感知机是首个可以根据样例数据来学习特征权重的模型。但是感知机只能解决线性可分问题,无法解决异或问题。(Perceptrons:an Introductionto Computational Geometry)

5.    分布式知识表达:核心思想是现实世界中的知识和概念应该通过多个神经元的提出来表达,而模型中的每一个神经元也应该参与表达多个概念

6.    数据集

  • 1.    图像数据集ImageNet
  • 2.    人脸识别数据集LFW
  • 3.    手写体数字识别数据集MNIST
  • 4.    SVHV数据集(斯坦福大学)
  • 5.    TIMIT数据集
  • 6.    语料库:WordNet,ConceptNet,FrameNet(描述自然语言中单词之间的关系)
  • 7.    GloVe(斯坦福开源的单词向量)
  • 8.    SentimentTreebank数据集(斯坦福)

7.    深度学习算法AlexNet

8.    图像分类比赛 ILSVRC

9.    单词向量将每一个单词描述成一个相对维度较低的向量,对于相近的单词,其对应的单词向量在空间的距离也应该较近。于是单词词义上的相似度可以通过空间中的距离来描述。在单词向量中,已经隐含的表达了性别的概念。

10. AlphaGo主要由三部分组成:蒙特卡罗树搜索(MonteCarlo tree Search,MCTS),估值网络(valuenetwork),走棋网络(policy network)。蒙特卡罗树搜索实现了对不同落子点的搜索,它会根据估值网络和走棋网络对落子后局势的评判来更加智能的寻找最佳落子点。

 


阅读更多
换一批

没有更多推荐了,返回首页