zhulf0804
码龄9年
求更新 关注
提问 私信
  • 博客:535,637
    社区:348
    535,985
    总访问量
  • 131
    原创
  • 382
    粉丝
  • 47
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2016-07-19

个人简介:点云,深度学习

博客简介:

zhulf0804的博客

博客描述:
code and computer vision.
查看详细资料
个人成就
  • 获得471次点赞
  • 内容获得303次评论
  • 获得2,019次收藏
  • 代码片获得361次分享
创作历程
  • 5篇
    2022年
  • 4篇
    2021年
  • 40篇
    2020年
  • 69篇
    2019年
  • 1篇
    2018年
  • 2篇
    2017年
  • 16篇
    2016年
成就勋章
TA的专栏
  • 点云
    24篇
  • 计算机视觉
    21篇
  • linux
    1篇
  • codeforces
    6篇
  • 优雅的python
  • Leetcode
    38篇
  • 操作系统
    4篇
  • CV算法岗面试
    1篇
  • 机器学习
    15篇
  • 数学知识
    4篇
  • 其它
    12篇
  • 图像处理
    3篇
  • 零散知识
    11篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 硬件开发
    arm开发
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

3D检测论文阅读简记

论文读完之后很快忘记了, 写长篇的论文笔记又很耗时间; 因此打算换一种简洁的方式记录读过的一些3D检测论文: 论文的动机和主要的解决问题。
原创
发布博客 2022.06.23 ·
970 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

pdb跳出for循环

pdb跳出for循环
原创
发布博客 2022.06.17 ·
3535 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[CVPR 2019] PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud

在本文中, 作者提出了PointRCNN用于在原始点云中做3D目标检测。整个框架包括两个阶段: stage-1用于以bottom-up的方式生成3D候选框, stage-2在规范(canonical)坐标系细化候选框, 来获得最终的检测结果。Stage-1子网络通过把点云中的点分割成前景点和背景点, 直接从点云中以bottom-up的方式产生少量的高质量的候选框; Stage-2子网络把stage-1子网络产生的每一个候选框中的points变换到规范坐标系来更好的学习局部空间特征, 并结合stage-1产生
原创
发布博客 2022.06.03 ·
751 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

[CVPR 2020] 3DSSD: Point-based 3D Single Stage Object Detector

当前, 有很多voxel-based的单阶段3D检测器, 然而point-based的单阶段3D检测器仍处于探索中。本文中, 我们第一个提出了一个轻量级的, 高效的point-based的单阶段检测器 (3DSSD), 并在精度和效率方面取得了一个很好的平衡。在这种范式中, 丢弃了现有point-based方法中不可或缺的upsampling layers和refinement stage, 以减少大量的计算成本。我们新颖地提出了用于下采样流程的混合采样策略, 以实现在更少的点上进行检测。为了满足精度和速度
原创
发布博客 2022.06.02 ·
925 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

3D点云 (Lidar)检测入门篇 - PointPillars PyTorch实现

3D点云 (Lidar)检测入门篇 - PointPillars PyTorch实现完整代码:https://github.com/zhulf0804/PointPillars。自动驾驶中基于Lidar的object检测,简单的说,就是从3D点云数据中定位到object的框和类别。具体地,输入是点云X∈RN×c\mathbf X \in \mathbb R^{N \times c}X∈RN×c (一般c=4c=4c=4),输出是nnn个检测框bboxes, 以第iii个检测框bbox为例, 它包括位姿信
原创
发布博客 2022.05.28 ·
2352 阅读 ·
5 点赞 ·
4 评论 ·
37 收藏

Ubuntu16.04快速安装显卡驱动, Cuda, cuDNN

一、显卡驱动安装sudo add-apt-repository ppa:graphics-drivers/ppasudo apt update# 查看可选驱动ubuntu-drivers devices# 选择合适驱动安装sudo apt install nvidia-driver-xxx# 重启sudo reboot# 验证是否安装成功nvidia-smi二、Cuda安装(以Cuda10.1为例)# 官网下载Cuda(建议下载.run(local))https://
原创
发布博客 2021.04.15 ·
311 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

PyTorch学习率

https://www.kaggle.com/isbhargav/guide-to-pytorch-learning-rate-scheduling
原创
发布博客 2021.01.13 ·
228 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

5639. 完成所有工作的最短时间

Leetcode 周赛223的hard题目,此题是我见到的很惊艳的题目,用到了二进制表示状态,枚举状态,二分法,动态规划等知识,值得记录一下。看到这个题目时,只能想到二分法,看了题解后才发现这个是二分 + 状压dp的题目。看了题解,发现这个题目的实现用了很多二进制表示,其中最为精辟的是枚举状态,结合https://oi-wiki.org/math/bit/#_14勉强看懂代码。下面是python3的代码实现,但是tle了,看了下面的评论说是此题对python不友好,下次再用C++把这个题目实现一下吧。
原创
发布博客 2021.01.10 ·
704 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

位运算

https://oi-wiki.org/math/bit/
原创
发布博客 2021.01.10 ·
153 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

查看python运行程序的id号

查看python运行程序的id号:ps -ef|grep python
原创
发布博客 2020.12.18 ·
1180 阅读 ·
0 点赞 ·
2 评论 ·
0 收藏

[arXiv 2020] Learning 3D-3D Correspondences for One-shot Partial-to-partial Registration

零、概要论文: Learning 3D-3D Correspondences for One-shot Partial-to-partial Registrationtag: arXiv 2020; Registration作者: Zheng Dang, Fei Wang, Mathieu Salzmann机构: Xi’an Jiaotong University, EPFL Switzerland笔者整理了一个最近几年250多篇点云的论文列表,欢迎大家一块学习交流。0.0 摘要点云的3D
原创
发布博客 2020.12.02 ·
752 阅读 ·
2 点赞 ·
2 评论 ·
6 收藏

3DMatch数据集

关于更多点云资源点击这里,包括250篇近几年的点云论文及数据集,包括点云配准、点云分割、点云检测、点云补全、无监督学习等方向。下述3DMatch数据集的统计分析的代码均可在这里访问。一、3DMatch数据集简介3DMatch数据集收集了来自于62个场景的数据,其中54个场景的数据用于训练,8个场景的数据用于评估,其具体名称查看train.txt和test.txt。3DMatch数据常用于3D点云的关键点,特征描述子,点云配准等任务。官方主页 | 3DMatch: Learning Local
原创
发布博客 2020.11.28 ·
14095 阅读 ·
23 点赞 ·
37 评论 ·
89 收藏

[ICCV 2019] Fully Convolutional Geometric Features

零、概要论文: Fully Convolutional Geometric Features标签: ICCV 2019; feature, match, registration代码: https://github.com/chrischoy/FCGF作者: Christopher Choy,Jaesik Park, Vladlen Koltun机构: Stanford University, POSTECH, Intel Labs笔者整理了一个最近几年250多篇点云的论文列表,欢迎大家
原创
发布博客 2020.11.28 ·
1739 阅读 ·
5 点赞 ·
0 评论 ·
11 收藏

点云中的Minkowski卷积

一、MinkowskiEngine简介第一次见到MinkowskiEngine,应该是在两个月之前了,当时也没有去留意这个库。最近读了一些点云的论文,发现还是有不少论文的源码是基于MinkowskiEngine的,包括PointContrast(ECCV 2020),DGR(Deep Global Registration, CVPR 2020),Learning Multiview 3D Point Cloud Registration(CVPR 2020)和FCGF(Fully Convolution
原创
发布博客 2020.11.21 ·
7066 阅读 ·
26 点赞 ·
20 评论 ·
66 收藏

基于深度学习的点云配准Benchmark

1. 概要最近几年,基于深度学习的点云配准算法不断被提出,包括PointNetLK[1],Deep ICP[2],DCP[3],PRNet[4],IDAM[5],RPM-Net[6],3DRegNet[7],DGR[8]等。这些网络在ModelNet40,Kitti,或3DMatch数据集上进行试验,其性能与速度均超过了传统的ICP算法。这些算法或者网络结构较为复杂,或者结果难以复现,对于把深度学习应用到点云配准的初学者而言,不是很友好。这里结合自己的感触和最近阅读的PCRNet[9] (两者不谋而合),
原创
发布博客 2020.11.13 ·
3188 阅读 ·
6 点赞 ·
6 评论 ·
52 收藏

sshfs挂载远程硬盘

安装sudo apt-get install sshfs 创建目录sudo mkdir /mnt/target挂载sudo sshfs -o allow_other username@x.x.x.x:/home/src/ /mnt/target卸载sudo umount /mnt/target参考资料: https://linux.cn/article-7855-1.html
原创
发布博客 2020.11.06 ·
605 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[arXiv 2019] PCRNet: Point Cloud Registration Network using PointNet Encoding

零、概要论文: PCRNet: Point Cloud Registration Network using PointNet Encodingtag: arXiv 2019; Registration代码: https://github.com/vinits5/pcrnet, https://github.com/vinits5/pcrnet_pytorch/作者: Vinit Sarode, Xueqian Li, Hunter Goforth, Yasuhiro Aoki, Rangap
原创
发布博客 2020.10.30 ·
2745 阅读 ·
1 点赞 ·
6 评论 ·
23 收藏

[CVPR 2020] SampleNet: Differentiable Point Cloud Sampling

零、概要论文: SampleNet: Differentiable Point Cloud Samplingtag: CVPR 2020; Sample, Classification, Registration, Reconstruction代码: https://github.com/itailang/SampleNet作者: Itai Lang, Asaf Manor, Shai Avidan机构: Tel Aviv University笔者整理了一个最近几年150多篇点云的论文列表,欢
原创
发布博客 2020.10.28 ·
3539 阅读 ·
3 点赞 ·
4 评论 ·
24 收藏

Softmax后的数据分布

在读SampleNet网络的时候,论文中提到当数据都很小(非常大的负数)时,经过Softmax后,会倾向于出现[0, 1]的值,比较疑惑,就进行了实验,发现的确如此。import numpy as npimport torchimport torch.nn as nndef pprint(x, y, desc): print('='*10, desc, '='*10) print(f'input: {np.round(x.numpy(), 2)}') print(f'sof
原创
发布博客 2020.10.28 ·
1125 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

mac 命令行光标消失

解决方案: command + /
原创
发布博客 2020.10.28 ·
2770 阅读 ·
7 点赞 ·
0 评论 ·
1 收藏
加载更多