竞赛正式文档可以在全国大学生智能车竞赛网站下载:https://smartcar.cdstm.cn
第十六届全国大学生智能车创意组包括有三个组别:
▌01 竞赛背景
全国大学生智能汽车竞赛是以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程的实践活动,是教育部倡导的大学生科技竞赛之一。竞赛以立足培养,重在参与,鼓励探索,追求卓越为指导思想,培养大学生的创意性科技竞赛能力。
近年来,人工智能这一科技浪潮正在深刻改变着世界,智能机器人作为人工智能的一个综合性载体已经开始渗透进日常生活的方方面面。2020年由于疫情的影响,无接触配送得到了大规模推广,智能移动服务机器人扮演了重要角色。本次由科大讯飞(苏州)科技有限公司协办的创意组比赛以餐饮领域的配送场景为主题,利用ROS和AI识别算法,基于赛事车模完成比赛任务。赛事所涉及关键技术均源自产业需求,既满足了机器人人才培养的需求,又有助于推动行业发展。
▌02 参赛要求与赛程安排
2.1参赛要求
1、讯飞创意组比赛作为智能车竞赛的创意比赛面向全国全日制在校研究生、本科生和专科生。
2、每个队伍最多参与学生5人,指导老师1~2名
3、每个学校只能有一只队伍获得赞助车模。
4、每个学校的二级学院只能允许两只队伍参加线下分区赛。
2.2赛事时间安排
▌03 线上比赛方案
3.1线上赛简介
为保证线上比赛的公平性,讯飞创意组组线上仿真比赛平台统一用「Gazebo」。赛道模型和无人车三维模型由组委会于赛前统一提供。
线上比赛需要先把赛道模型导入Gazebo,采用ROS中建地图的方式构建赛道地图,通过自主导航算法实现无人车完成从起点到终点的运动。仿真平台的传感器可以使用仿真车模自带的IMU,激光雷达或摄像头,仿真平台自主导航算法不限。
3.2比赛要求
3.2.1 仿真赛道
比赛正式开始前大赛组委会提供统一的赛道文件,供参赛选手使用,赛道模型不允许修改。正式比赛所采用赛道统一由50cm宽挡板拼接组成,赛道示意图如下:
3.2.2 仿真车模
统一使用组委会提供的仿真车模型,仿真车模型参数禁止修改。仿真车模型的示意图如下:
仿真车模型自带传感器如下:
IMU
激光雷达
广角摄像头
仿真车模型如下方面禁止修改:
尺寸大小
自带传感器参数
无人车质量
无人车中各部位的转动惯量矩阵
碰撞系数
3.2.3关于障碍物
线上仿真比赛赛道中会有随机出现的障碍物,车模运行时要避开障碍物,否则会有相应处罚,障碍物位置是随机的,会在赛前公布。
3.3 比赛任务
比赛时,仿真车根据提供的统一地图自主导航,避开障碍物,从赛道起点跑到终点,记录比赛完成时间,作为线上仿真比赛的成绩。
3.4 比赛违规说明
单次比赛总用时不得超过15分钟,没有到达终点的队伍不计入比赛排名。
碰撞场地边框罚时 5秒/次。
碰撞障碍物罚时 5秒/次。
禁止使用键盘、手柄等设备人为操控小车。
其余补充规则在竞赛培训时公布,补充规则均以保障比赛公平性为原则补充发布。
▌04 线上报名与选拔
4.1线上赛报名
在 https://www.iflyros.com 线上机器人学院或者使用iflyrobot@iflytek.com报名邮箱进行报名及相关咨询。
4.2 筛选方案
本次竞赛协办方提供100台车模等设备赞助,提供车模在本赛季竞赛期间的使用权。最后综合技术报告和线上仿真赛的成绩,在全部队伍中评选出60支队伍获取赞助资格。其中线上仿真比赛成绩权重占80%,技术报告权重占20%。
另外,为了体现教育公平性,另外 40个赞助名额提供给部分有特殊情况的学校如:偏远地区、经济水平较差地区的学校,AI或者机器人领域师资紧缺的职业院校等。
4.3 作品提交
本次竞赛需要提交虚拟仿真录屏、代码和技术报告,提交方式在培训期间发布。
为保证比赛公平,保证提交比赛视频时的代码与提交到组委会核查的代码一致,需要对比赛时用的代码和提交到组委会的代码的哈希值进行核验。如果发现比赛直播时展现的代码的哈希值与提交代码的哈希值不一致,则视为作弊行为,取消比赛资格。
4.4 下载的文件及资料
本届竞赛的下载资源将全程在讯飞文档云中更新。
下载链接:
http://pan.iflytek.com:80/#/link/5CC9ABB04E4CA6B49523888E31C2AEB9
访问密码:AaIG
▌05 分赛区竞赛规则
5.1分区赛简介
本赛项以智能机器人作为人工智能一个综合性实践载体,软件结合硬件,理论结合实践,从操作系统基础到应用实践再到算法实践与研究,深入浅出,把人工智能概念的学习融入到打造一个智能机器人的项目过程中,让学习的梯度更平缓,让实践的项目更接近产业更贴近生活。
本次赛项模拟餐厅场景下智能机器人由启动区出发、领取菜品、送达菜品的工作流程。
5.2比赛要求
5.2.1 比赛软件环境
本次比赛基于嵌入式计算平台,参赛选手需预装Ubuntu18.04系统,预装软件包括但不限于TensorFlow、TensorRT、ROS。
5.2.1 比赛场地
场地由单片30cm×50cm(高×长)的PP塑料挡板构成。分为机器人启动区、任务领取区、可移动障碍区、任务交付区。
机器人启动区(A区):机器在此放置后启动
任务领取区(B区):在B区左侧的挡板上随机张贴代表任务的QR码。
可移动障碍区(全区域随机):此区域内会随机设置若干个人物模型(高度高于车模激光雷达)
任务交付区(D区):根据在B区领取的任务停泊在代表不同任务的D1\D2\D3区域。
注:板材间的链接方式为上下各一个直径70mm的圆柱形连接件,在进行竞赛时注意保持安全距离。
5.2.2关于障碍物
比赛赛道中会有随机出现的障碍物,车模运行时要避开障碍物,否则会有相应处罚,障碍物位置是随机的,但是不会影响车辆通行。
5.3比赛任务
前置任务:每个队伍上场比赛时,在组委会的监督下进行平台部署和设备调试,限时30分钟。
赛题任务:围绕比赛主题——餐厅配送,进行多段子任务。
子任务1:小车经语音唤醒启动(协办方负责培训);
子任务2:小车从出发区离开,移动至任务领取区B区,B区模拟的是餐厅的配菜区,B区挡板上的二维码(赛前会发布二维码的全局位置)包含了终点信息,二维码是随机的,分别代表了D1,D2,D3这三个终点;
子任务3:小车识别任务领取区张贴的QR码,获取终点信息;
子任务4:小车离开任务领取区,移动至C区;
子任务5:小车穿越C区,停泊在任务要求的终点区域;
子任务6:小车语音播报“您的菜品已送达,请您取餐”后总任务结束。
其他规则:
A. 在任务中可语音协助小车脱困或控制小车移动,但是不可经由语音命令将比赛任务传达给小车,在停泊区禁止使用,每场不得超过3次;
B. 在行驶途中,随机摆放若干个仿真人物模型,选手可使用车载的广角相机对这些仿真人物进行人物画像分析,本次比赛对人物画像的分析包含两个主要特征,一个是戴眼镜,一个是长头发(过肩),小车泊车后语音播报戴眼镜的人物数量以及长头发的任务数量,识别完全准确的队伍会获得时间奖励;
C. 关于停泊:2个轮子在目标停泊区域内视为未完成停泊本次竞赛成绩不计入排名,3个轮子在停泊区域内视为未完全完成停泊罚时10s,4个轮子均在停泊区域内视为完成停泊。
5.4比赛计分规则说明
5.5比赛违规说明
比赛过程中出现违规或异常情况按照以下方式处理:
(1)裁判发令后,机器人在 60秒内没有启动,比赛得分记为 0 分。
(2)机器人冲出场地、机器人失控则比赛结束,当前得分作为最终得分。
(3)机器人完成赛题任务过程中,停止运行超过60秒,比赛立即结束,当前成绩记为比赛最终成绩。
(4)机器人触碰围栏或障碍物连续超过30秒,比赛结束,以当前成绩记为比赛最终成绩。
其他未尽事宜,组委会有最终解释权。
5.6 车模
比赛车模采用了移动机器人最为常见的技术架构和传感器,上位机GPU嵌入式板卡,集成了激光雷达、广角相机、惯导模块等机器人传感器,开发者可轻松获取激光点云、姿态和图像数据进行SLAM和路径规划的应用和算法实践;下位机的MCU嵌入式板卡,预留丰富的传感器接口,开放原理图,开发者可进行嵌入式单片机的开发实践和控制算法实践;产品外观也经过精心打磨,荣获2020年中国红星设计奖,如下图所示:
车模参数:
(1)AI传感器1:环形6MIC阵列
- 6个麦克风、360°声源定位、5米收音范围
- USB通信、支持自定义唤醒词(无限次数)
- 板载声源定位及回声消除算法、支持实现全双工语音交互。
(2)AI传感器2:AHRS姿态检测模块
- 精度roll:0.1°,pitch:0.1°,YAW:0.5°
- 检测范围:Roll:±180°,Pitch:±90°,YAW:±180°
- 通信接口:板载UART
(3)AI传感器3:RGB相机
- 工作原理:单目超广角
- 彩色图像分辨率:19201080@30FPS、1280720@30FPS、640*480@30FPS
- 视场角:水平FOV124.8°、垂直FOV67°、对角FOV160°
- 焦距:2.8mm
- F/NO(Infinite):2.6±5%
- 物距:45cm-100m
(4)AI传感器4:激光雷达
- 工作原理:三角测距
- 测距频率:4000-9000Hz
- 扫描距离:0.1m-16m(扫描频率4000Hz),0.28m-16m(扫描频率9000Hz)
- 相对误差:2%
- 扫描角度:0-360°
- 角度分辨率:0.28°