人工神经网络(2024年秋季): 第一次作业

  ◎ 说明: 作业可以使用你所熟悉的编程语言和平台,比如 C,C++、MATLAB、Python等。作业链接。

 

01 经元学习


一、作业内容

1、神经元统一学习算法

  在第一章介绍了日本学者 “甘利俊一” 提出的统一公式,把对神经元输入连接权系数的修正 Δ W \Delta W ΔW 分成了三个独立成分的乘积:学习速率 η \eta η , 学习信号 r ( W , x , d ) r\left( {W,x,d} \right) r(W,x,d) 以及输入向量 X X X

▲ 图1.1 神经网络中神经元学习的统一公式

▲ 图1.1 神经网络中神经元学习的统一公式

  当学习信号 r ( W , x , d ) r\left( {W,x,d} \right) r(W,x,d) 取不同形式,可以得到神经元的三大类不同修正方式(无监督、有监督、死记忆):

【表1-1 不同的神经元学习算法】

学习规则权值调整学习信号初始值学习方式转移函数
Hebbian Δ W = η f ( W T X ) X \Delta W = \eta f\left( {W^T X} \right)X ΔW=ηf(WTX)X r = f ( W T X ) r = f\left( {W^T X} \right) r=f(WTX)随机无监督任意
Percetron Δ W = η [ d − s g n ( W T X ) ] X \Delta W = \eta \left[ {d - {\mathop{\rm sgn}} \left( {W^T X} \right)} \right]X ΔW=η[dsgn(WTX)]X r = d − f ( W T X ) r = d - f\left( {W^T X} \right) r=df(WTX)任意有监督二值函数
Delta Δ W = η [ d − f ( W T X ) ] f ′ ( W T X ) X \Delta W = \eta \left[ {d - f\left( {W^T X} \right)} \right]f'\left( {W^T X} \right)X ΔW=η[df(WTX)]f(WTX)X r = [ d − f ( W T X ) ] f ′ ( W T X ) r = \left[ {d - f\left( {W^T X} \right)} \right]f'\left( {W^T X} \right) r=[df(WTX)]f(WTX)任意监督连续可导
Widrow-Hoff
LMS
Δ W = η ( d − W T X ) X \Delta W = \eta \left( {d - W^T X} \right)X ΔW=η(dWTX)X r = d − W T X r = d - W^T X r=dWTX任意监督连续
Correlation
相关,外积
Δ W = η d X \Delta W = \eta dX ΔW=ηdX r = d r = d r=d0监督
死记忆
任意

  下面给出神经元模型和训练样本数据,请通过编程实现上述表格中的五种算法并给出计算结果。通过这个作业练习,帮助大家熟悉神经元的各种学习算法。

2、神经元模型

  下面给出神经元模型,根据不同的算法要求:

  • 选择相应的传递函数种类(离散二值函数、双曲正切函数、ReLU函数):除了Perceptron算法选择二值函数外,其它都选择双曲正切函数,
  • 神经元权系数( w 1 , w 2 , b w_1 ,w_2 ,b w1,w2,b )都初始化成 0。

▲ 图1.1.2 神经元及其传递函数

▲ 图1.1.2 神经元及其传递函数

3、样本数据

  训练样本包括 6 个数据,它们的分布如下图所示:

▲ 图1.1.3 神经元训练数据集合

▲ 图1.1.3 神经元训练数据集合

【表1-2 样本数据】

序号X1X2类别
1-0.1-0.2-1
20.50.51
3-0.50.2-1
4-0.20.5-1
50.20.11
60.00.81
from headm import *

import sys,os,math,time
import matplotlib.pyplot as plt
from numpy import *

xdim = [(-0.1,-0.2), (0.5,0.5), (-0.5,0.2),(-0.25,0.5),(0.2,0.1),(0,0.8)]
ldim = [-1,1,-1,-1,1,1]

printff("序列", "X1", "X2", "类别")

count = 0
for x,l in zip(xdim, ldim):

    count += 1
    printf("%d %3.1f %3.1f %d"%(count, x[0], x[1], l))

    if l > 0:
        marker = 'o'
        color = 'blue'
    else:
        marker = '+'
        color = 'red'

    plt.scatter(x[0], x[1], marker=marker, c=color, s=100)
    plt.text(x[0]+0.05,x[1],'(%3.1f,%3.1f)'%(x[0],x[1]))

plt.axis([-0.8, 0.8,-0.25, 1])
plt.xlabel("X1")
plt.ylabel("X2")
plt.grid(True)
plt.tight_layout()
plt.show()

二、作业要求

1、必做内容

  1. 给出每个学习算法核心代码;
  2. 给出经过两轮轮样本学习之后神经元的权系数数值结果(w1,w2,b);
* 权系数初始化为 0;
* 学习速率 η = 0.5 \eta = 0.5 η=0.5 ;
* 训练样本按照 表格1-2 的顺序对神经元进行训练;

2、选做内容

  1. 在坐标系中绘制出经过两轮训练之后,权系数(w1,w2)所在的空间位置;
  2. 简单讨论一下不同算法对于神经元权系数的影响;

import sys,os,math,time
import matplotlib.pyplot as plt
from numpy import *

xdim = [(-0.1,0.3), (0.5,0.7), (-0.5,0.2),(-0.7,0.3),(0.7,0.1),(0,0.5)]
ddim = [1,-1,1,1,-1,1]

def sigmoid(x):
    return 1/(1+exp(-x))

def hebbian(w,x,d):
    x1 = [1,x[0],x[1]]
    net = sum([ww*xx for ww,xx in zip(w, x1)])
    o = sigmoid(net)
    w1 = [ww+o*xx for ww,xx in zip(w,x1)]
    return w1

def perceptron(w,x,d):
    x1 = [1,x[0],x[1]]
    net = sum([ww*xx for ww,xx in zip(w, x1)])
    o = 1 if net >= 0 else -1
    w1 = [ww+(d-o)*xx for ww,xx in zip(w,x1)]
    return w1

def delta(w,x,d):
    x1 = [1,x[0],x[1]]
    net = sum([ww*xx for ww,xx in zip(w, x1)])
    o = sigmoid(net)
    o1 = o*(1-o)
    w1 = [ww+(d-o)*o1*xx for ww,xx in zip(w,x1)]
    return w1

def widrawhoff(w,x,d):
    x1 = [1,x[0],x[1]]
    net = sum([ww*xx for ww,xx in zip(w, x1)])
    o = sigmoid(net)
    w1 = [ww+(d-o)*xx for ww,xx in zip(w,x1)]
    return w1

def correlation(w,x,d):
    x1 = [1,x[0],x[1]]
    w1 = [ww+d*xx for ww,xx in zip(w,x1)]
    return w1

wb = [0,0,0]                        # [b, w1, w2]
for x,d in zip(xdim, ddim):
    wb = correlation(wb,x,d)
    print(wb)

 

02 知机


一、两类问题

1、样本数据

  利用单个神经元(具有三个参数【两个权系数和一个偏移量】: w 1 , w 2 , b {w_1},{w_2},b w1,w2,b ), 使用感知机算法求解样本分类问题。 样本数据就采用第一道大题中的六个样本数据。 见 【表1-2 样本数据】

2、作业要求

  1. 绘制出网络结构图,并给出算法核心代码;
  2. 使用训练结束之后神经元的三个参数所决定的线性分类边界: f ( x 1 , x 2 ) = w 1 x 1 + w 2 x 2 + b f\left( {{x_1},{x_2}} \right) = {w_1}{x_1} + {w_2}{x_2} + b f(x1,x2)=w1x1+w2x2+b
  3. 对比不同学习速率对于训练收敛的影响;比如取学习速率 η = 0.5 \eta = 0.5 η=0.5 以及 η = 1.0 \eta = 1.0 η=1.0

二、多类问题

1、样本数据

  如下是三个字母 A,B,C,D,E,J,K 的 7×9 的点阵图, 共有三种字体。将它们转换成由(-1,1) 组成的63维向量。

▲ 图2.2.1 A,B,C,D,E,J,K三种字体点阵

▲ 图2.2.1 A,B,C,D,E,J,K三种字体点阵

A = [0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
B = [1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
C = [0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
D = [1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
E = [1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
F = [1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
G = [0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
H = [1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0]
I = [0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
J = [0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

  下面每一行给出了21个字符的编码以及期望输出。

[0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1]
[1, 0, 0, 0, 0, 0, 0]

[1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0]
[0, 1, 0, 0, 0, 0, 0]

[0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0]
[0, 0, 1, 0, 0, 0, 0]

[1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1]
[0, 0, 0, 0, 0, 0, 1]

[0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0]
[0, 0, 0, 0, 0, 1, 0]

[1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 1, 0, 0]

[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0]
[1, 0, 0, 0, 0, 0, 0]

[0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0]
[0, 1, 0, 0, 0, 0, 0]

[0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0]
[0, 0, 1, 0, 0, 0, 0]

[1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 0, 0, 0, 1]

[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0]
[0, 0, 0, 0, 0, 1, 0]

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 1, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1]
[1, 0, 0, 0, 0, 0, 0]

[1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0]
[0, 1, 0, 0, 0, 0, 0]

[0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0]
[0, 0, 1, 0, 0, 0, 0]

[1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1]
[0, 0, 0, 0, 0, 0, 1]

[0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0]
[0, 0, 0, 0, 0, 1, 0]

[1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 1, 0, 0]

[1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]

2、作业基本要求

  1. 建立由七个神经元组成的简单感知机网络,完成上述七个字母的识别训练;
  2. 测试训练之后的网络在带有一个噪声点的数据集合上的识别效果。 给图片增加一个噪声点就是随机在样本中选取一个像素, 将其数值进行改变(从-1改变成1, 或者从1改变成-1)。

3、选做内容

  1. 测试上述感知机网络在两个噪声点的数据集合上的识别效果;
  2. 对比以下两种情况训练的感知机的性能。
    • 第一种情况:只使用没有噪声的七个字母进行训练;
    • 第二种情况:使用没有噪声和有一个噪声点的样本进行训练;
  3. 对比不同的学习速率对于训练过程的影响。

三、感知机算法收敛特性

  • 这是选做题目

  请证明对于线性可分的两类数据集合, 使用感知机算法进行分类。 感知机算法收敛步骤数量的上限与学习速率无关。

 

03 Adaline网络


一、两类分类问题

1、样本数据

  利用单个神经元(具有权系数 w 1 , w 2 {w_1},{w_2} w1,w2 以及偏移量 b b b ), 使用ADALINE算法(LMS)求解样本分类问题。 样本数据就采用第一道大题中的六个样本数据。 见**【表1-2 样本数据】**。

2、作业要求

  1. 绘制出网络结构图,并给出算法核心代码:包括最小二乘法(LMS);
  2. 绘制出训练结束之后, 神经元参数对应的线性分类界面函数: f ( x 1 , x 2 ) = w 1 x 1 + w 2 x 2 + b f\left( {{x_1},{x_2}} \right) = {w_1}{x_1} + {w_2}{x_2} + b f(x1,x2)=w1x1+w2x2+b 。 对比 ADALINE与感知计算法在分类结果方面的优劣

二、鸟类分类(选做题)

1、背景介绍

  自适应线性神经元 ADALINE(Adatpive Linear Neuron)是由 Bernard Widrow 与 Ted Hoff 在 1959年提出的算法。关于他们提出算法前后的故事,大家可以参照网文: The ADALINE - Theory and Implementation of the First Neural Network Trained With Gradient Descent 进行了解。

  下面也是根据上述网文中所介绍的两种鸟类(猫头鹰与信天翁)数据集合,产生相应的分类数据集合。大家使用 ADALINE 算法完成它们的分类器算法。

▲ 图3.1.1 猫头鹰与信天翁

▲ 图3.1.1 猫头鹰与信天翁

2、样本数据

(1)数据参数

  根据Wikipedia 中关于 信天翁 Wandering albatross 和 猫头鹰( Great horned owl )的相关数据,这两种鸟类的题中和翼展长度如下表所示。

【表1-3 两种鸟类的体型数据】

种类体重(kg)翼展(m)
信天翁93
猫头鹰1.21.2

  使用计算机产生两个鸟类体型随机数据数据,下表给出了每一类数据产生的参数:

【表1-4 两类鸟类数据产生参数】

鸟类体重平均值体重方差翼展平均值翼展方差个数分类
信天翁9000800300201001
猫头鹰100020010015100-1
(2)Python示例代码

  下面给出了产生随机样本数据的 Python 示例代码。大家可以参照这些代码,使用自己熟悉的 编程语言来实现。

def species_generator(mu1, sigma1, mu2, sigma2, n_samples, target, seed):
    '''creates [n_samples, 2] array
    
    Parameters
    ----------
    mu1, sigma1: int, shape = [n_samples, 2]
        mean feature-1, standar-dev feature-1
    mu2, sigma2: int, shape = [n_samples, 2]
        mean feature-2, standar-dev feature-2
    n_samples: int, shape= [n_samples, 1]
        number of sample cases
    target: int, shape = [1]
        target value
    seed: int
        random seed for reproducibility
    
    Return
    ------
    X: ndim-array, shape = [n_samples, 2]
        matrix of feature vectors
    y: 1d-vector, shape = [n_samples, 1]
        target vector
    ------
    X'''
    rand = np.random.RandomState(seed)
    f1 = rand.normal(mu1, sigma1, n_samples)
    f2 = rand.normal(mu2, sigma2, n_samples)
    X = np.array([f1, f2])
    X = X.transpose()
    y = np.full((n_samples), target)
    return X, y

▲ 图3.1.2 产生两类数据的分布

▲ 图3.1.2 产生两类数据的分布

三、作业要求

  1. 构造一个 ADALINE 神经元,完成上述两类鸟类的分类。 由于需要进行分类,在对 ADALINE 的输出在经过一个符号函数(sgn)便可以完成结果的分类;
  2. 利用上述数据对 ADALINE 进行训练。观察记录训练误差变化的曲线。
  3. 讨论不同的学习速率对于训练结果的影响,看是否存在一个数值,当学习速率超过这个数值之后,神经元训练过程不再收敛。


■ 相关文献链接:

● 相关图表链接:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值