柯西-施瓦兹不等式
01 Cauchy-Shwartz不等式
一、信号测不准原理
前两天, 介绍信息领域中的信号测不准定理。 利用信号时域波形和频谱波形的二阶矩 作为信号宽度, 也就是中心位置不确定性的度量。 它们之间的乘积等于等于一个常量。 使用傅里叶变换的微分性质以及能量守恒定理, 可以将乘积表达式更换为时域的乘积, 最后一步需要使用到 柯西-施瓦兹不等式, 合并分子乘积两项, 最后得到证明的结果。 这是其需要应用的柯西-施瓦兹不等式究竟如何证明, 下面给出它的常见到的证明过程。
二、不等式证明
在这里只证明在两个函数都是实数函数的情况, 假设使用 g(x) 的倍数去逼近 f(x)。 两者之间的误差信号能量是对误差信号平方的积分。 这个误差能量是参数 y 的函数。 将上面积分号的表达式展开。 对应给定的任意 f(x), g(x),
这个表达式是关于 y 的二次多项式。 对应的系数设为ABC。 由于该函数对应的是误差信号的能量, 始终大于等于0。 根据二次多项式的性质, 他的系数满足一个不等式, 也就是二次多项式根式中的判别式的值小于等于0。 将系数使用它们各自的表达式替代, 此时, 我们就得到了所需要证明的 柯西-施瓦兹不等式了。 它说明对于两个信号内积的能量, 小于等于两个信号能量的乘积。 等号的成立条件, 要求两个信号 f(x), g(x) 之间是一个比例关系。
※ 总 结 ※
本文证明了数学上的注明不等式, 柯西-施瓦兹不等式。 对于复数函数, 这个不等式也成立。 证明过程类似。
■ 相关文献链接: