数据结构中常见的排序算法(下)


上期学习完了前四个排序,这期我们来学习剩下的三个排序:

🍔 1、冒泡排序

🍟 2、快速排序 ( 三种方法 )

🍞 3、归并排序

🧀 4、排序算法复杂度及稳定性分析

今天我们主要难点有快速排序和归并排序,会简单涉及到二叉树相关知识,相对来说比较抽象!所以如果有看不懂或者不明白的地方可以看看我之前的详解二叉树,也可以直接问我!教你打篮球的程序猿随时在线。👴

 🍔 1、冒泡排序
 冒泡排序是我们相对最好理解的个排序,但是有些小优化的地方我会指出来,我们先看图解:

void BubbleSort(int* a, int n)//升序
{
    //时间复杂度O(N^2)
    while (n > 0)
    {
        int exchange = 0;
        for (int i = 1; i < n; ++i)//防止越界访问
        {
            if (a[i - 1] > a[i])
            {
                Swap(&a[i - 1], &a[i]);//交换
                exchange = 1;
            }
        }
        if (exchange == 0)
        {
            break;
        }
        --n;
    }
}
代码分析:我们每排完一趟,就可以确定最后一个位置的数,再者我们定义了一个exchange来判断在排序过程中是否发生了交换,如果没有发生交换,证明此数组已经有序,我们可以直接跳出循环,避免不必要的循环!

冒泡排序的特性总结:

1. 冒泡排序是一种非常容易理解的排序

2. 时间复杂度:O(N^2) 、空间复杂度:O(1)

3. 稳定性:稳定

 🍟 2、快速排序 ( 三种方法 )
快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。

基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。 

第一种方法是我们最常见的挖坑法: 

 代码实现如下:

void QuickSort(int* a, int left, int right)//升序
{
    if (left >= right)
    {
        return;
    }
 
    int begin = left;
    int end = right;
    int pivot = begin;
    int key = a[begin];
 
    while (begin < end)
    {
        //右边找小
        while (begin < end && a[end] >= key) //这里如果不写begin<end的话可能会出现越界访问
        {
            --end;
        }
        //小的放到左边的坑里,自己形成了新的坑位
        a[pivot] = a[end];
        pivot = end;
        
        //左边找大
        while (begin < end && a[begin] <= key)
        {
            ++begin;
        }
        //大的放到左边的坑里,自己形成了新的坑位
        a[pivot] = a[begin];
        pivot = begin;
    }
 
    //当begin和end相遇,证明他们两都到了坑的位置
    pivot = begin;//随便给一个
    a[pivot] = key;
 
    //[left, pivot - 1] pivot [pivot+ 1, right]
    //左子区间和右子区间有序,我们就有序了,如何让他们有序呢?分治递归
    QuickSort(a, left, pivot - 1);
    QuickSort(a, pivot + 1, right);
}
 
//函数传参:QuickSort(arr, 0, sizeof(arr) / sizeof(int) - 1);
 第二种方法左右指针法:

 代码实现如下:

void QuickSort(int* a, int left, int right)//升序
{
    if (left >= right)
    {
        return;
    }
 
    int begin = left;
    int end = right;
    int keyi = begin;
 
    while (begin < end)
    {
        //找小
        while (begin < end && a[end] >= a[keyi])
        {
            --end;
        }
        //找大
        while (begin < end && a[begin] <= a[keyi])
        {
            ++begin;
        }
        Swap(&a[begin], &a[end]);
    }
 
    Swap(&a[begin], &a[keyi]);
    keyi = begin;
 
    //[left, keyi - 1] keyIndex [keyi + 1, right]
    //左子区间和右子区间有序,我们就有序了,如何让他们有序呢?分治递归
 
    QuickSort(a, left, keyi - 1);
    QuickSort(a, keyi + 1, right);
}
 第三种方法前后指针法: 

代码实现如下: 

void QuickSort(int* a, int left, int right)//升序
{
    if (left >= right)
    {
        return;
    }
 
    int keyi = left;
    int prev = left;
    int cur = left + 1;
    while (cur <= right)
    {
        //++prev != cur为了防止自己跟自己交换造成不必要的消耗
        if (a[cur] < a[keyi] && ++prev != cur)
        {
            Swap(&a[prev], &a[cur]);
        }
        ++cur;
    }
    Swap(&a[keyi], &a[prev]);
    keyi = prev;
    
    //[left, keyi - 1] keyi [keyi + 1, right]
    //左子区间和右子区间有序,我们就有序了,如何让他们有序呢?分治递归
 
    QuickSort(a, left, keyi - 1);
    QuickSort(a, keyi + 1, right);
}
 🍞 3、归并排序
基本思想: 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法 (Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 

归并排序我们思想还是和快排思想差不多采用分治算法,当数组被分为单独一个元素就是有序的了(见上图),在接着归并到一个数组中,即可实现排序!

 代码实现如下:

void _MergeSort(int* a, int left, int right, int* tmp)
{
    if (left >= right)
        return;
 
    int mid = (left + right) >> 1;
    // 假设[left, mid] [mid + 1, right] 有序,那么我们就可以归并了
    _MergeSort(a, left, mid, tmp);
    _MergeSort(a, mid + 1, right, tmp);
 
    //归并
    int begin1 = left, end1 = mid;
    int begin2 = mid + 1, end2 = right;
    int index = left;
    while (begin1 <= end1 && begin2 <= end2)
    {
        if (a[begin1] < a[begin2])
        {
            tmp[index++] = a[begin1++];
        }
        else
        {
            tmp[index++] = a[begin2++];
        }
    }
 
    while (begin1 <= end1)
    {
        tmp[index++] = a[begin1++];
    }
 
    while (begin2 <= end2)
    {
        tmp[index++] = a[begin2++];
    }
 
    //拷贝回去
    for (int i = left; i <= right; ++i)
    {
        a[i] = tmp[i];
    }
}
 
void MergeSort(int* a, int n)
{
    int* tmp = (int*)malloc(sizeof(int) * n);
    _MergeSort(a, 0, n - 1, tmp);
 
    free(tmp);
}
 🧀 4、排序算法复杂度及稳定性分析 
稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍 在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值