Python科学计算库NumPy基础操作

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/u012269327/article/details/55511301

NumPy是什么?能吃吗?好吃吗?

。。。吃货总是把问题想的这么简单。。。

来看看NumPy在官网上是怎么定义自己的吧。。

NumPy is the fundamental package for scientific computing with Python. It contains among other things:

    1.a powerful N-dimensional array object
    2.sophisticated (broadcasting) functions
    3.tools for integrating C/C++ and Fortran code
    4.useful linear algebra, Fourier transform, and random number capabilities


Besides its obvious scientific uses, NumPy can also be used as an efficient multi-dimensional container of generic data. Arbitrary data-types can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of databases.

看到了把,翻译成中文就是在数据处理方面屌得很。。


下面来看看具体的基本操作吧:

1.导入NumpPy这个库(安装的话,在之前的blog中已经介绍过啦),并将其简写方便使用:


import numpy as np


2.Python自定义的数组并不是严格意义上的矩阵,我们可以使用np将其转换成np自己的矩阵类型


array00 = np.array([[1,2,3],[4,5,6]])
print(array00)




3.查看矩阵的维数,矩阵的形式,矩阵中元素的个数


print 'number of dim:',array00.ndim
print 'shape:',array00.shape
print 'size',array00.size




4.设置输出类型


array01 = np.array([1,2,3],dtype=np.int)
print(array01.dtype)



5.初始化N*M的元素为0的矩阵


array01 = np.array([1,2,3],dtype=np.int)
print(array01.dtype)




6.初始化N*M的元素为1的矩阵


array03 = np.ones((4,5))
print array03



7.初始化N*M的元素为空的矩阵


array04 = np.empty((4,5))
print array04



8.生成一个1到10步长为2的矩阵


array05 = np.arange(1,10,2)
print array05



9.生成一个具有12个元素,shape为N*M的矩阵


array06 = np.arange(12).reshape((3,4))
print array06



10.生成一个1到20 被cut为12段的一个线性矩阵


array07 = np.linspace(1,20,12)
print array07
print
array07 = np.linspace(1,20,12).reshape((3,4))
print array07




11.关于矩阵的一些处理


#初始化两个1*4矩阵
array08 = np.array([4,5,6,7])
array09 = np.arange(4)

#矩阵减法
print array08,array09
array10 = array08 - array09
print array10

#矩阵加法
print array08,array09
array10 = array08 + array09
print array10

#矩阵元素平方
print array08
array10 = array08 ** 2
print array10

#矩阵求sin
print array08
array10 = np.sin(array08)
print array10

#矩阵元素是否大于5
print array08
array10 = array08 > 5
print array10

#矩阵元素是否等于5
print array08
array10 = array08 == 5
print array10



12.矩阵中元素相乘和矩阵乘法


#初始化两个2*2矩阵
array11 = np.array([[1,1],[0,1]])
array12 = np.arange(4).reshape((2,2))
print array11
print
print array12
print
#矩阵中每个元素相乘
array13 = array11 * array12
#矩阵乘法
array14 = np.dot(array11,array12)
array14 = array11.dot(array12)

print array13
print
print array14




13.随机生成矩阵


array15 = np.random.random((4,4))
print array15
print
array15_1 = np.random.randint(1,100,10)
print array15_1



14.关于矩阵的一个些操作


#随机生成矩阵
array15 = np.random.random((4,4))
print array15

array15_1 = np.random.randint(1,100,10)
print array15_1

#方差
print np.var(array15_1)
print
#矩阵求和
print np.sum(array15)
#求出矩阵中最小元素
print np.min(array15)
#求出矩阵中最大元素
print np.max(array15)
#矩阵行求和
print np.sum(array15,axis=0)
#求出每行最小元素
print np.min(array15,axis=0)
#求出每行最大元素
print np.max(array15,axis=0)
print

#列求和
print np.sum(array15,axis=1)
#求出每列最小元素
print np.min(array15,axis=1)
#求出每列最大元素
print np.max(array15,axis=1)


15.关于矩阵索引的一些操作和其他操作


array16 = np.arange(1,13).reshape((3,4))
print array16

#求矩阵最小值索引
print np.argmin(array16)
#求矩阵最大值索引
print np.argmax(array16)
#求矩阵平均值
print np.mean(array16)
print np.average(array16)
#求矩阵行平均值
print np.mean(array16,axis=0)
#求矩阵列平均值
print np.mean(array16,axis=1)

#求矩阵中位数
print np.median(array16)
#矩阵元素累加
print np.cumsum(array16)
#矩阵相邻元素累差
print np.diff(array16)



16.元素的非零判别


array17 = np.array([[1,2,3],[3,0,4],[0,2,2]])

print np.nonzero(array17)



17.矩阵排序


array18 = np.array([[4,2,3],[3,0,4],[0,5,2]])
#矩阵行排序
print np.sort(array18)




18.矩阵转置以及矩阵内元素的范围控制


array19 = np.arange(20).reshape(4,5)
print array19
print

#矩阵转置
print array19.T
print np.transpose(array19)
print
#矩阵中小于4用4替代,大于8用8替代
print np.clip(array19,4,8)



19.对矩阵的一些控制输出


array21 = np.arange(3,15).reshape(3,4)
print array21
print
print (array21[2])
print
print array21[1][1]

print array21[1,1]
print array21[1,1:]
print

#打印每一行
for row in array21:
print row

print

#打印每一列
for column in array21.T:
print column
print

#折叠成一个一维数组
print (array21.flatten())
print

#打印数组中的每一个元素
for item in array21.flat:
print item




20.矩阵的分割


array22 = np.arange(16).reshape(4,4)
print array22
print


#每两行分割
print np.split(array22,2,axis=0)
print


#每两列分割
print np.split(array22,2,axis=1)
print

#不等分割
print np.array_split(array22,3,axis=1)
print

#横向分割
print np.vsplit(array22,2)
print

#纵向分割
print np.hsplit(array22,2)




21.矩阵拷贝


array23 = np.arange(4)
array24 = array23

print array23
print array24

#浅拷贝
print array23 is array24
array23[2] = 14
print
print array23
print array24
print


#深拷贝
array25 = array23.copy()

print array23
print array25

print array23 is array25
array23[2] = 99
print
print array23
print array25



22.矩阵合并


array26 = np.array([1,1,1])
array27 = np.array([2,2,2])

#横向合并
print np.vstack((array26,array27))
print

#纵向合并
print np.hstack((array26,array27))

列表变矩阵
print array26[np.newaxis,:]
print array26[np.newaxis,:].shape
print
print array26[:,np.newaxis]
print array26[:,np.newaxis].shape

array28 = array26[:,np.newaxis]
array29 = array27[:,np.newaxis]
print
print np.vstack((array28,array29))
print
print np.hstack((array28,array29))

#多矩阵合并
print
print np.concatenate((array28,array29,array29,array28),axis=0)
print
print np.concatenate((array28,array29,array29,array28),axis=1)


好啦就到这里吧,感觉是不是很像matlab,NumPy对矩阵的处理确实很强大!









展开阅读全文

科学计算Numpy简介

06-07

<p>rn <span> </span> rn</p>rn<p>rn <br />rn</p>rn<p>rn <br />rn</p>rn<p>rn <p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span>rn </p>rn <p>rn 点此链接购买:rn </p>rn <table>rn <tbody>rn <tr>rn <td>rn <span style="color:#337FE5;"><a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</a><br />rn</span>rn </td>rn </tr>rn </tbody>rn </table>rn</p>rn<p>rn <br />rn</p>rn<br />rn<span>购买课程后,可扫码进入学习群</span><span style="font-family:&quot;">,获取唐宇迪老师答疑</span> rn<p>rn <img src="https://img-bss.csdn.net/201908070616119465.jpg" alt="" /> rn</p>rn<p>rn <br />rn</p>rn<p>rn 数学原理推导与案例实战紧密结合,由机器学习经典算法过度到深度学习的世界,结合深度学习两大主流框架Caffe与Tensorflow,选择经典项目实战人脸检测与验证码识别。原理推导,形象解读,案例实战缺一不可!具体课程内容涉及回归算法原理推导、决策树与随机森林、实战样本不均衡数据解决方案、支持向量机、Xgboost集成算法、神经网络基础、神经网络整体架构、卷积神经网络、深度学习框架--Tensorflow实战、案例实战--验证码识别、案例实战--人脸检测。rn专属会员卡优惠链接:http://edu.csdn.net/lecturer/1079rn</p>

没有更多推荐了,返回首页