LRU缓存实现(Java)

本文转自:点击打开链接


LRU是Least Recently Used 的缩写,翻译过来就是“最近最少使用”,LRU缓存就是使用这种原理实现,简单的说就是缓存一定量的数据,当超过设定的阈值时就把一些过期的数据删除掉,比如我们缓存10000条数据,当数据小于10000时可以随意添加,当超过10000时就需要把新的数据添加进来,同时要把过期数据删除,以确保我们最大缓存10000条,那怎么确定删除哪条过期数据呢,采用LRU算法实现的话就是将最老的数据删掉,废话不多说,下面来说下Java版的LRU缓存实现

Java里面实现LRU缓存通常有两种选择,一种是使用LinkedHashMap,一种是自己设计数据结构,使用链表+HashMap

LRU Cache的LinkedHashMap实现

LinkedHashMap自身已经实现了顺序存储,默认情况下是按照元素的添加顺序存储,也可以启用按照访问顺序存储,即最近读取的数据放在最前面,最早读取的数据放在最后面,然后它还有一个判断是否删除最老数据的方法,默认是返回false,即不删除数据,我们使用LinkedHashMap实现LRU缓存的方法就是对LinkedHashMap实现简单的扩展,扩展方式有两种,一种是inheritance,一种是delegation,具体使用什么方式看个人喜好

复制代码
//LinkedHashMap的一个构造函数,当参数accessOrder为true时,即会按照访问顺序排序,最近访问的放在最前,最早访问的放在后面
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) {
        super(initialCapacity, loadFactor);
        this.accessOrder = accessOrder;
}

//LinkedHashMap自带的判断是否删除最老的元素方法,默认返回false,即不删除老数据
//我们要做的就是重写这个方法,当满足一定条件时删除老数据
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
        return false;
}
复制代码

LRU缓存LinkedHashMap(inheritance)实现

采用inheritance方式实现比较简单,而且实现了Map接口,在多线程环境使用时可以使用 Collections.synchronizedMap()方法实现线程安全操作

复制代码
package cn.lzrabbit.structure.lru;

import java.util.LinkedHashMap;
import java.util.Map;

/**
 * Created by liuzhao on 14-5-15.
 */
public class LRUCache2<K, V> extends LinkedHashMap<K, V> {
    private final int MAX_CACHE_SIZE;

    public LRUCache2(int cacheSize) {
        super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true);
        MAX_CACHE_SIZE = cacheSize;
    }

    @Override
    protected boolean removeEldestEntry(Map.Entry eldest) {
        return size() > MAX_CACHE_SIZE;
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for (Map.Entry<K, V> entry : entrySet()) {
            sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue()));
        }
        return sb.toString();
    }
}
复制代码

 这样算是比较标准的实现吧,实际使用中这样写还是有些繁琐,更实用的方法时像下面这样写,省去了单独见一个类的麻烦

复制代码
final int cacheSize = 100;
Map<String, String> map = new LinkedHashMap<String, String>((int) Math.ceil(cacheSize / 0.75f) + 1, 0.75f, true) {
    @Override
    protected boolean removeEldestEntry(Map.Entry<String, String> eldest) {
    return size() > cacheSize;
    }
};
复制代码

 

LRU缓存LinkedHashMap(delegation)实现

delegation方式实现更加优雅一些,但是由于没有实现Map接口,所以线程同步就需要自己搞定了

复制代码
package cn.lzrabbit.structure.lru;

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Set;

/**
 * Created by liuzhao on 14-5-13.
 */
public class LRUCache3<K, V> {

    private final int MAX_CACHE_SIZE;
    private final float DEFAULT_LOAD_FACTOR = 0.75f;
    LinkedHashMap<K, V> map;

    public LRUCache3(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        //根据cacheSize和加载因子计算hashmap的capactiy,+1确保当达到cacheSize上限时不会触发hashmap的扩容,
        int capacity = (int) Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTOR) + 1;
        map = new LinkedHashMap(capacity, DEFAULT_LOAD_FACTOR, true) {
            @Override
            protected boolean removeEldestEntry(Map.Entry eldest) {
                return size() > MAX_CACHE_SIZE;
            }
        };
    }

    public synchronized void put(K key, V value) {
        map.put(key, value);
    }

    public synchronized V get(K key) {
        return map.get(key);
    }

    public synchronized void remove(K key) {
        map.remove(key);
    }

    public synchronized Set<Map.Entry<K, V>> getAll() {
        return map.entrySet();
    }

    public synchronized int size() {
        return map.size();
    }

    public synchronized void clear() {
        map.clear();
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        for (Map.Entry entry : map.entrySet()) {
            sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue()));
        }
        return sb.toString();
    }
}
复制代码

 LRU Cache的链表+HashMap实现

 注:此实现为非线程安全,若在多线程环境下使用需要在相关方法上添加synchronized以实现线程安全操作

复制代码
package cn.lzrabbit.structure.lru;


import java.util.HashMap;

/**
 * Created by liuzhao on 14-5-12.
 */
public class LRUCache1<K, V> {

    private final int MAX_CACHE_SIZE;
    private Entry first;
    private Entry last;

    private HashMap<K, Entry<K, V>> hashMap;

    public LRUCache1(int cacheSize) {
        MAX_CACHE_SIZE = cacheSize;
        hashMap = new HashMap<K, Entry<K, V>>();
    }

    public void put(K key, V value) {
        Entry entry = getEntry(key);
        if (entry == null) {
            if (hashMap.size() >= MAX_CACHE_SIZE) {
                hashMap.remove(last.key);
                removeLast();
            }
            entry = new Entry();
            entry.key = key;
        }
        entry.value = value;
        moveToFirst(entry);
        hashMap.put(key, entry);
    }

    public V get(K key) {
        Entry<K, V> entry = getEntry(key);
        if (entry == null) return null;
        moveToFirst(entry);
        return entry.value;
    }

    public void remove(K key) {
        Entry entry = getEntry(key);
        if (entry != null) {
            if (entry.pre != null) entry.pre.next = entry.next;
            if (entry.next != null) entry.next.pre = entry.pre;
            if (entry == first) first = entry.next;
            if (entry == last) last = entry.pre;
        }
        hashMap.remove(key);
    }

    private void moveToFirst(Entry entry) {
        if (entry == first) return;
        if (entry.pre != null) entry.pre.next = entry.next;
        if (entry.next != null) entry.next.pre = entry.pre;
        if (entry == last) last = last.pre;

        if (first == null || last == null) {
            first = last = entry;
            return;
        }

        entry.next = first;
        first.pre = entry;
        first = entry;
        entry.pre = null;
    }

    private void removeLast() {
        if (last != null) {
            last = last.pre;
            if (last == null) first = null;
            else last.next = null;
        }
    }


    private Entry<K, V> getEntry(K key) {
        return hashMap.get(key);
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        Entry entry = first;
        while (entry != null) {
            sb.append(String.format("%s:%s ", entry.key, entry.value));
            entry = entry.next;
        }
        return sb.toString();
    }

    class Entry<K, V> {
        public Entry pre;
        public Entry next;
        public K key;
        public V value;
    }
}
复制代码

LinkedHashMap的FIFO实现

FIFO是First Input First Output的缩写,也就是常说的先入先出,默认情况下LinkedHashMap就是按照添加顺序保存,我们只需重写下removeEldestEntry方法即可轻松实现一个FIFO缓存,简化版的实现代码如下

复制代码
final int cacheSize = 5;
LinkedHashMap<Integer, String> lru = new LinkedHashMap<Integer, String>() {
    @Override
    protected boolean removeEldestEntry(Map.Entry<Integer, String> eldest) {
    return size() > cacheSize;
    }
};
复制代码

调用示例

测试代码

  View Code

运行结果

  View Code

 

 

 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值