Causal Inference: What If (the book)模型的因果推理部分

本文详细阐述了建模在因果推断中的重要性,介绍了IP加权、边际结构模型、标准化和G-估计等方法,同时涵盖了工具变量在解决内生性问题上的应用,以及在生存分析中考虑截尾和风险的计算。此外,还讨论了变量选择在因果推断中的挑战和策略。

第十一章 为什么要建模

  • 11.1 数据不能自我说明:介绍数据不能自我说明的概念和原因,以及为什么需要建模来进行因果推断。
  • 11.2 参数估计器的条件均值:介绍参数估计器的条件均值的概念和应用,以及如何使用参数估计器来进行因果推断。
  • 11.3 非参数估计器的条件均值:介绍非参数估计器的条件均值的概念和应用,以及如何使用非参数估计器来进行因果推断。
  • 11.4 平滑:介绍平滑的概念和应用,以及如何使用平滑来处理数据中的噪声和不确定性。
  • 11.5 偏差-方差权衡:介绍偏差-方差权衡的概念和应用,以及如何在建模过程中平衡偏差和方差。

第十二章 逆概率加权和边际结构模型

  • 12.1 因果问题:介绍因果问题的概念和应用,以及如何使用IP加权和边际结构模型来进行因果推断。
  • 12.2 通过建模估计IP权重:介绍如何通过建模来估计IP权重,以及如何使用逆概率加权来进行因果推断。
  • 12.3 稳定的IP权重:介绍如何使用稳定的IP权重来进行因果推断,以及如何处理IP权重的不稳定性问题。
  • 12.4 边际结构模型:介绍边际结构模型的概念和应用,以及如何使用边际结构模型来进行因果推断。
  • 12.5 效应修饰和边际结构模型:介绍效应修饰和边际结构模型的概念和应用,以及如何使用边际结构模型来处理效应修饰的问题。
  • 12.6 截尾和缺失数据:介绍如何处理截尾和缺失数据的问题,以及如何使用IP加权和边际结构模型来进行因果推断。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值