第十一章 为什么要建模
- 11.1 数据不能自我说明:介绍数据不能自我说明的概念和原因,以及为什么需要建模来进行因果推断。
- 11.2 参数估计器的条件均值:介绍参数估计器的条件均值的概念和应用,以及如何使用参数估计器来进行因果推断。
- 11.3 非参数估计器的条件均值:介绍非参数估计器的条件均值的概念和应用,以及如何使用非参数估计器来进行因果推断。
- 11.4 平滑:介绍平滑的概念和应用,以及如何使用平滑来处理数据中的噪声和不确定性。
- 11.5 偏差-方差权衡:介绍偏差-方差权衡的概念和应用,以及如何在建模过程中平衡偏差和方差。
第十二章 逆概率加权和边际结构模型
- 12.1 因果问题:介绍因果问题的概念和应用,以及如何使用IP加权和边际结构模型来进行因果推断。
- 12.2 通过建模估计IP权重:介绍如何通过建模来估计IP权重,以及如何使用逆概率加权来进行因果推断。
- 12.3 稳定的IP权重:介绍如何使用稳定的IP权重来进行因果推断,以及如何处理IP权重的不稳定性问题。
- 12.4 边际结构模型:介绍边际结构模型的概念和应用,以及如何使用边际结构模型来进行因果推断。
- 12.5 效应修饰和边际结构模型:介绍效应修饰和边际结构模型的概念和应用,以及如何使用边际结构模型来处理效应修饰的问题。
- 12.6 截尾和缺失数据:介绍如何处理截尾和缺失数据的问题,以及如何使用IP加权和边际结构模型来进行因果推断。

本文详细阐述了建模在因果推断中的重要性,介绍了IP加权、边际结构模型、标准化和G-估计等方法,同时涵盖了工具变量在解决内生性问题上的应用,以及在生存分析中考虑截尾和风险的计算。此外,还讨论了变量选择在因果推断中的挑战和策略。
最低0.47元/天 解锁文章
5994

被折叠的 条评论
为什么被折叠?



