机器学习面试题(持续更新)

1、无监督和有监督算法的区别是什么?

有监督学习:

对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。这里,所有的标记(分类)是已知的。因此,训练样本的岐义性低。

无监督学习:

对没有概念标记(分类)的训练样本进行学习,以发现训练样本集中的结构性知识。这里,所有的标记(分类)是未知的。因此,训练样本的岐义性高。聚类就是典型的无监督学习。

2、监督学习有哪些步骤?

1. 数据的创建和分类(标注-划分测试和训练集)

2.数据增强(data Augmentation)(图像旋转,平移,颜色变换,裁剪,仿射变换)
3.特征工程(Feature Engineering),
包括特征提取和特征选择,机器学习的特征工程不在被关注,研究者提出的不同的网络结构、正则化、归一化方法实际上就是深度学习背景下的特征工程.

4.构建预测模型和损失
构建模型预测和标签之间的损失函数,常见的损失函数(Loss Function)有交叉熵、均方差等

5. 训练
选择合适的模型和超参数,参数比如支持向量机中核函数、误差项惩罚权重等,通过合适的优化方法不断缩小输出与标签之间的差距,优化方法最常见的就是梯度下降法及其变种.

6.验证和模型选择
需要进行模型测试。

7. 测试和应用

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页