自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 资源 (2)
  • 收藏
  • 关注

转载 轻量化网络:MobileNet v3解析

原文:Searching for MobileNetV3论文链接:https://arxiv.org/abs/1905.02244一、基本论述MobileNet v3发表于2019年,该v3版本结合了v1的深度可分离卷积、v2的Inverted Residuals和Linear Bottleneck、SE模块,利用NAS(神经结构搜索)来搜索网络的配置和参数。mobilenet-...

2020-04-13 22:46:16 984

转载 深度特征融合---理解add和concat之多层特征融合

在各个网络模型中,ResNet,FPN等采用的element-wise add来融合特征,而DenseNet等则采用concat来融合特征。那add与concat形式有什么不同呢?事实上两者都可以理解为整合特征图信息。只不过concat比较直观,而add理解起来比较生涩。concatenate操作是网络结构设计中很重要的一种操作,经常用于将特征联合,多个卷积特征提取框架提取的特征融合或者是将输...

2020-04-11 17:09:34 452

转载 卷积网络基础知识---Depthwise Convolution && Pointwise Convolution && Separable Convolution

卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷积运算参数量的一种典型方法。常规卷积运算假设输入层为一个大小为64×64像素、三通道彩色图片。...

2020-04-11 16:21:43 90

转载 ResNeXt结构解读

论文:Aggregated Residual Transformations for Deep Neural Networks (2017CVPR上)论文地址:https://arxiv.org/pdf/1611.05431.pdfPyTorch代码:https://github.com/miraclewkf/ResNeXt-PyTorch原文来源:https://blog.csdn....

2020-04-09 20:46:30 420

转载 SENet结构解读

原文:https://zhuanlan.zhihu.com/p/65459972一、前言在深度学习领域,CNN分类网络的发展对其它计算机视觉任务如目标检测和语义分割都起到至关重要的作用,因为检测和分割模型通常是构建在CNN分类网络(称为backbone)之上。提到CNN分类网络,我们所熟知的是VGG,ResNet,Inception,DenseNet等模型,它们的效果已经被充分验证,而且被...

2020-04-07 17:17:25 431

adult数据挖掘.zip

adult数据集数据挖掘,基于python语言的决策树算法,包括数据处理与归类整理

2019-10-16

Social_Network_Ads.csv

该数据共400条数据,4个特征,年龄、性别、收入、购买意向

2019-10-14

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除