Matplotlib

#%%

from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import math
# 图片中文显示
plt.rcParams["font.sans-serif"] = "SimHei"
plt.rcParams["axes.unicode_minus"] = True
%config InlineBackend.figure_format ='svg'

#%% md

常用函数
| pyplot函数 | 描述                         |
| ---------- | ---------------------------- |
| text()     | 在Axes对象任意位置添加文字   |
| xlabel()   | 为x轴添加标签                |
| ylabel()   | 为y轴添加标签                |
| title()    | 为Axes对象添加标题           |
| legend()   | 为Axes对象添加图例           |
| annotate() | 为Axes对象添加注释(箭头可选) |
| suptitle() | 为Figure对象添加中心化的标题 |


#%%

plt.figure(figsize=(8,5),dpi=150)
x = np.linspace(0,10,100)
# marker:标记
# markersize:标记大小
# markeredgecolor:标记边框颜色
# markeredgewidth:标记边缘宽度
# ls:line style 线样式
# lw:line width 线宽度
# label:标签
# mfc:标记的背景颜色
# alpha:透明度(0-1之间)
plt.plot(x,np.sin(x*math.pi),'g',marker='D',mfc = 'r',label ='sinx')
plt.plot(x,np.cos(x*math.pi),'r',marker='o',ls='-',lw=1,mfc='y',
         label='cosx',markersize=3,alpha = 1)
plt.plot(x,-np.sin(x*math.pi),'b',marker='o',ls='-',lw=1,mfc='y',
         label='-sinx',markersize=5,markeredgecolor='r',
        markeredgewidth=3)


#%%

# 绘图样式-坐标轴刻度
plt.figure(figsize=(8,5),dpi = 150)
x = np.linspace(1,10)
y = np.log(x)
plt.plot(x,y)
# 设置x轴
plt.xticks(ticks=np.arange(0,11,1))
# 设置y轴
plt.yticks(ticks=np.arange(0,2.6,0.2))
plt.show()

#%%

# xticks属性
plt.figure(figsize=(9,5),dpi=150)
x = np.linspace(1,10)
y = np.log(x)
plt.plot(x,y)

# ticks:设置范围
# fontsizeL设置字体大小
# color:设置颜色
plt.xticks(ticks=np.arange(0,11,1),fontsize = 20,color='r')
# labels:显示刻度标签
# ha:水平对齐方式
plt.yticks(ticks=[0,2,4],labels=['min','2','max'],
          color = 'orange',ha='right')
plt.show()


#%%

# 网格文本
plt.figure(figsize=(5,3),dpi=150)
x = np.linspace(0,10)
y = np.sin(x)
plt.plot(x,y)
# 网格线
plt.grid(ls='--',lw=0.5,c='k',axis = 'y')

#%%

# 注释
plt.figure(figsize=(5,3),dpi=150)
x = np.linspace(1,10,10)
y = np.array([45,65,22,37,34,56,45,50,64,78])
plt.plot(x,y,marker = 'o')
plt.annotate(
    text = '最大值', #标注内容
    xy = (10,78), # 标注的坐标点
    xytext=(1,78), #标注字体的位置
    # 箭头样式
    arrowprops={
    'width' :0.2,
    "headwidth":4,
        'facecolor':'red'            
    }
)

#%%

# 双轴图  twinx() 和 twiny() 函数
fig = plt.figure(figsize=(10,5),dpi = 150)
axes1 = plt.gca()  #得到当前轴域
x = np.arange(1,11)
axes1.plot(x,np.exp(x),'go-')
axes1.set_ylabel('指数函数',c='g')
# 添加双轴 
axes2= axes1.twinx()
axes2.plot(x,np.log(x),'ro-')
axes2.set_ylabel('对数函数',c='r')
# 绘制图例
fig.legend(labels=('指数函数','对数函数'),loc='lower right')

#%% md

#loc:指定图例的位置。可以是字符串或整数。常用的位置包括:

'best'(默认值):自动选择最佳位置。
'upper right':右上角。
'upper left':左上角。
'lower right':右下角。
'lower left':左下角。
'right':右侧。
'center left':左侧中央。
'center right':右侧中央。
'lower center':底部中央。
'upper center':顶部中央。
————————————————

                            版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
                        
原文链接:https://blog.csdn.net/weixin_74850661/article/details/132949071

#%%

# 单条折线
x = ['Mon',"Thu",'Wed',"Thur","Fri","Sun","Sat"]
y = np.random.randint(25,55,7)
plt.plot(x,y,'g',marker = 'o',markersize = 5,label = '周活')
plt.xlabel('时间')
plt.ylabel('用户活跃度')
plt.title('活跃度')
# 显示图例
plt.legend('best')
# x1 y1表示文本所处的位置坐标,ha参数控制水平对齐方式,va控制垂直对齐
for x1, y1 in zip(x,y):
    plt.text(x1,y1,str(y1),ha='center',va='bottom',fontsize =10 )


#%%

# 多条折线图
# 对比两天同一时间温度变化
x = [5,8,12,14,16,18,20]
y1 = [18,21,29,31,26,24,20]
y2 = [15,18,24,30,31,25,24]
plt.plot(x,y1,'r',marker = 'o',markersize =5)
plt.plot (x,y2,'g',marker='o',markersize=10)
plt.title('温度对比折线图')
plt.xlabel('时间(h)')
plt.ylabel('温度(℃)')
for a ,b in zip(x,y1):
    plt.text(a,b,b,ha='center',va='bottom',fontsize=10)
for a,b in zip(x,y2):
    plt.text(a,b,b,ha='center',va='bottom',fontsize=10)
# 
# x,y:位置(position)

# s:该position需要展示的值

# fontdict:字体

# withdash:宽度
# 
# 
# 

#%%

# 柱状图
langs = ['C','C++','Java','Python','PHP']
students = [23,17,35,29,12]
# 绘制柱状图
plt.xlabel('语文')
plt.ylabel('热度')
plt.bar(langs,students)
plt.show()

#%%

# 饼图
# labels为饼图加标签
# autopct 控制饼图内百分比设置
# '%1.1f%%'指小数点前后位数
# shadow是在饼图下画一个阴影,False即不画
sizes = [2,5,12]
labels = ['娱乐','育儿','饮食']
plt.pie(sizes,labels = labels,autopct ='%1.3f%%',
       shadow=False,startangle=100)
plt.show()

#%%

# 散点图
x = np.arange(1,8,1)
y = np.arange(10,80,10)
plt.scatter(x,y)

#%%

df = pd.DataFrame({
    "一月":np.random.randint(0,20,size=8),
    "二月":np.random.randint(0,20,size=8),
    "三月":np.random.randint(10,20,size=8),
    "四月":np.random.randint(20,22,size=8),
    "五月":np.random.randint(20,25,size=8),
    "六月":np.random.randint(20,30,size=8)
})
print(df.columns)
y = ['湖南','湖北','陕西','甘肃','浙江','江西','广东','四川']
x = df.columns
data = df.values
plt.figure(figsize=(7,5),dpi=150)
plt.imshow(data,cmap='Blues')
plt.xticks(range(len(x)),x)
plt.yticks(range(len(y)),y)

for num_x in range(len(x)):
    for num_y in range(len(y)):
        plt.text(
            x=num_x,
            y=num_y,
            s = data[num_y,num_x],
            ha = 'center',
            va = 'center',
            fontsize = 15
        )
plt.colorbar()
plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值