
#%%
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
import math
# 图片中文显示
plt.rcParams["font.sans-serif"] = "SimHei"
plt.rcParams["axes.unicode_minus"] = True
%config InlineBackend.figure_format ='svg'
#%% md
常用函数
| pyplot函数 | 描述 |
| ---------- | ---------------------------- |
| text() | 在Axes对象任意位置添加文字 |
| xlabel() | 为x轴添加标签 |
| ylabel() | 为y轴添加标签 |
| title() | 为Axes对象添加标题 |
| legend() | 为Axes对象添加图例 |
| annotate() | 为Axes对象添加注释(箭头可选) |
| suptitle() | 为Figure对象添加中心化的标题 |
#%%
plt.figure(figsize=(8,5),dpi=150)
x = np.linspace(0,10,100)
# marker:标记
# markersize:标记大小
# markeredgecolor:标记边框颜色
# markeredgewidth:标记边缘宽度
# ls:line style 线样式
# lw:line width 线宽度
# label:标签
# mfc:标记的背景颜色
# alpha:透明度(0-1之间)
plt.plot(x,np.sin(x*math.pi),'g',marker='D',mfc = 'r',label ='sinx')
plt.plot(x,np.cos(x*math.pi),'r',marker='o',ls='-',lw=1,mfc='y',
label='cosx',markersize=3,alpha = 1)
plt.plot(x,-np.sin(x*math.pi),'b',marker='o',ls='-',lw=1,mfc='y',
label='-sinx',markersize=5,markeredgecolor='r',
markeredgewidth=3)
#%%
# 绘图样式-坐标轴刻度
plt.figure(figsize=(8,5),dpi = 150)
x = np.linspace(1,10)
y = np.log(x)
plt.plot(x,y)
# 设置x轴
plt.xticks(ticks=np.arange(0,11,1))
# 设置y轴
plt.yticks(ticks=np.arange(0,2.6,0.2))
plt.show()
#%%
# xticks属性
plt.figure(figsize=(9,5),dpi=150)
x = np.linspace(1,10)
y = np.log(x)
plt.plot(x,y)
# ticks:设置范围
# fontsizeL设置字体大小
# color:设置颜色
plt.xticks(ticks=np.arange(0,11,1),fontsize = 20,color='r')
# labels:显示刻度标签
# ha:水平对齐方式
plt.yticks(ticks=[0,2,4],labels=['min','2','max'],
color = 'orange',ha='right')
plt.show()
#%%
# 网格文本
plt.figure(figsize=(5,3),dpi=150)
x = np.linspace(0,10)
y = np.sin(x)
plt.plot(x,y)
# 网格线
plt.grid(ls='--',lw=0.5,c='k',axis = 'y')
#%%
# 注释
plt.figure(figsize=(5,3),dpi=150)
x = np.linspace(1,10,10)
y = np.array([45,65,22,37,34,56,45,50,64,78])
plt.plot(x,y,marker = 'o')
plt.annotate(
text = '最大值', #标注内容
xy = (10,78), # 标注的坐标点
xytext=(1,78), #标注字体的位置
# 箭头样式
arrowprops={
'width' :0.2,
"headwidth":4,
'facecolor':'red'
}
)
#%%
# 双轴图 twinx() 和 twiny() 函数
fig = plt.figure(figsize=(10,5),dpi = 150)
axes1 = plt.gca() #得到当前轴域
x = np.arange(1,11)
axes1.plot(x,np.exp(x),'go-')
axes1.set_ylabel('指数函数',c='g')
# 添加双轴
axes2= axes1.twinx()
axes2.plot(x,np.log(x),'ro-')
axes2.set_ylabel('对数函数',c='r')
# 绘制图例
fig.legend(labels=('指数函数','对数函数'),loc='lower right')
#%% md
#loc:指定图例的位置。可以是字符串或整数。常用的位置包括:
'best'(默认值):自动选择最佳位置。
'upper right':右上角。
'upper left':左上角。
'lower right':右下角。
'lower left':左下角。
'right':右侧。
'center left':左侧中央。
'center right':右侧中央。
'lower center':底部中央。
'upper center':顶部中央。
————————————————
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/weixin_74850661/article/details/132949071
#%%
# 单条折线
x = ['Mon',"Thu",'Wed',"Thur","Fri","Sun","Sat"]
y = np.random.randint(25,55,7)
plt.plot(x,y,'g',marker = 'o',markersize = 5,label = '周活')
plt.xlabel('时间')
plt.ylabel('用户活跃度')
plt.title('活跃度')
# 显示图例
plt.legend('best')
# x1 y1表示文本所处的位置坐标,ha参数控制水平对齐方式,va控制垂直对齐
for x1, y1 in zip(x,y):
plt.text(x1,y1,str(y1),ha='center',va='bottom',fontsize =10 )
#%%
# 多条折线图
# 对比两天同一时间温度变化
x = [5,8,12,14,16,18,20]
y1 = [18,21,29,31,26,24,20]
y2 = [15,18,24,30,31,25,24]
plt.plot(x,y1,'r',marker = 'o',markersize =5)
plt.plot (x,y2,'g',marker='o',markersize=10)
plt.title('温度对比折线图')
plt.xlabel('时间(h)')
plt.ylabel('温度(℃)')
for a ,b in zip(x,y1):
plt.text(a,b,b,ha='center',va='bottom',fontsize=10)
for a,b in zip(x,y2):
plt.text(a,b,b,ha='center',va='bottom',fontsize=10)
#
# x,y:位置(position)
# s:该position需要展示的值
# fontdict:字体
# withdash:宽度
#
#
#
#%%
# 柱状图
langs = ['C','C++','Java','Python','PHP']
students = [23,17,35,29,12]
# 绘制柱状图
plt.xlabel('语文')
plt.ylabel('热度')
plt.bar(langs,students)
plt.show()
#%%
# 饼图
# labels为饼图加标签
# autopct 控制饼图内百分比设置
# '%1.1f%%'指小数点前后位数
# shadow是在饼图下画一个阴影,False即不画
sizes = [2,5,12]
labels = ['娱乐','育儿','饮食']
plt.pie(sizes,labels = labels,autopct ='%1.3f%%',
shadow=False,startangle=100)
plt.show()
#%%
# 散点图
x = np.arange(1,8,1)
y = np.arange(10,80,10)
plt.scatter(x,y)
#%%
df = pd.DataFrame({
"一月":np.random.randint(0,20,size=8),
"二月":np.random.randint(0,20,size=8),
"三月":np.random.randint(10,20,size=8),
"四月":np.random.randint(20,22,size=8),
"五月":np.random.randint(20,25,size=8),
"六月":np.random.randint(20,30,size=8)
})
print(df.columns)
y = ['湖南','湖北','陕西','甘肃','浙江','江西','广东','四川']
x = df.columns
data = df.values
plt.figure(figsize=(7,5),dpi=150)
plt.imshow(data,cmap='Blues')
plt.xticks(range(len(x)),x)
plt.yticks(range(len(y)),y)
for num_x in range(len(x)):
for num_y in range(len(y)):
plt.text(
x=num_x,
y=num_y,
s = data[num_y,num_x],
ha = 'center',
va = 'center',
fontsize = 15
)
plt.colorbar()
plt.show()