[HDU 1757] A Simple Math Problem (矩阵快速幂)

本文详细解析了HDU1757题目,介绍了一种使用矩阵快速幂的方法来解决该递推数列问题。通过构造特定的转移矩阵,并利用快速幂算法高效计算出目标项f(k)。
链接

HDU 1757


题意

当i < 10时,f(i) = i;当i >= 10时,f(i) = f(i-1) * a0 + f(i-2) * a1 + … + f(i-10) * a9。
a0到a9都是1或0,给出a0到a9,求f(k)。


题解

一道比较容易的矩阵构造,新生成的那项f(new)需要之前的10项乘系数求和,显然需要一个向量(f(new-1), f(new-2), …, f(new-10))和向量T(1, 1, 1, …, 1)相乘,之后又需要保留f(new-1)到f(new-9),所以还是相对容易构造的:
a0 1
a1 0 1
a2 0 0 1
a3 0 0 0 1
a4 0 0 0 0 1
a5 0 0 0 0 0 1
a6 0 0 0 0 0 0 1
a7 0 0 0 0 0 0 0 1
a8 0 0 0 0 0 0 0 0 1
a9 0 0 0 0 0 0 0 0 0
这就是转移矩阵。

之后求快速幂即可。


代码
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long lint;
int mod;
struct matrix
{
    int a[10][10], n;
    void clear() { memset(a, 0, sizeof(a)); }
    matrix(int k, int type)
    {
        n = k, clear();
        if(type) for(int i = 0; i < n; i++)
            a[i][i] = 1;
    }
    matrix() { n = 2, clear(); a[0][0] = a[0][1] = a[1][0] = 1, a[1][1] = 0; }
    matrix operator* (const matrix& b) const
    {
        matrix o = matrix(n, 0);
        for(int i = 0; i < n; i++)
        for(int j = 0; j < n; j++)
        for(int k = 0; k < n; k++)
        {
            o.a[i][j] += ((lint)a[i][k] * b.a[k][j]) % mod;
            o.a[i][j] %= mod;
        }
        return o;
    }
    friend matrix operator^ (matrix tmp, int k)
    {
        matrix o = matrix(tmp.n, 1);
        while(k)
        {
            if(k & 1) o = o * tmp;
            tmp = tmp * tmp;
            k >>= 1;
        }
        return o;
    }
};
matrix getKthsum(const matrix& b, int k)
{
    matrix tmp = matrix(b.n << 1, 0);
    for(int i = 0; i < b.n; i++)
    for(int j = 0; j < b.n; j++)
    tmp.a[i][j] = b.a[i][j];
    for(int i = 0; i < b.n; i++)
    {
        tmp.a[i][b.n + i] = 1;
        tmp.a[b.n + i][b.n + i] = 1;
    }
    tmp = tmp^(k+1);
    matrix o = matrix(b.n, 0);
    for(int i = 0; i < b.n; i++)
    for(int j = 0; j < b.n; j++)
    o.a[i][j] = tmp.a[i][b.n + j];
    for(int i = 0; i < b.n; i++)
        o.a[i][i] = (o.a[i][i] + mod - 1) % mod;

    return o;
}
int main()
{
    int k, m;
    while(cin >> k >> m)
    {
        mod = m;
        matrix B = matrix(10, 0), A = matrix(10, 0);
        for(int i = 0; i < 10; i++) B.a[0][i] = 9 - i;
        for(int i = 0; i < 10; i++) scanf("%d", &A.a[i][0]);
        for(int i = 1; i < 10; i++) A.a[i-1][i] = 1;
        if(k < 10) printf("%d\n", k % mod);
        else
        {
            matrix ans = matrix(10, 0);
            ans = B * (A ^ (k - 9));
            printf("%d\n", ans.a[0][0]);
        }
    }
    return 0;
}
内容概要:本文详细介绍了一个基于Java与Vue的食品安全溯源与智能分析系统的设计与实现,涵盖项目背景、目标意义、面临挑战及解决方案,并阐述了系统的整体架构与核心技术模块。系统通过集成物联网设备实现全流程数据采集,采用分布式数据库保障大数据存储与高效访问,结合机器学习算法进行风险预测与智能预警,同利用可视化技术呈现溯源链路与分析结果,实现了食品从生产到销售全过程的透明化、智能化管理。文中还提供了关键模块的代码示例,如数据清洗、特征提取、决策树模型训练与预测、溯源接口开发等,增强了项目的可实施性与参考价值。; 适合人群:具备Java开发基础、熟悉Spring Boot和Vue框架,有一定前后端开发经验的软件工程师或计算机专业学生,尤其适合从事食品安全、物联网、大数据分析等相关领域技术研发的人员; 使用场景及目标:①构建食品全链条溯源体系,提升企业对食品安全事件的快速响应能力;②实现生产流程数字化管理,支持政府监管与消费者透明查询;③应用机器学习进行风险建模与智能预警,推动食品行业智能化转型; 阅读建议:建议结合文中提供的模型描述与代码示例,深入理解各模块设计逻辑,重点关注数据处理流程、算法实现与前后端交互机制,可基于该项目进行二次开发或拓展应用于其他行业的溯源系统建设。
### HDU 2544 题目分析 HDU 2544 是关于最短路径的经典问题,可以通过多种方法解决,其中包括基于邻接矩阵的 Floyd-Warshall 算法。以下是针对该问题的具体解答。 --- #### 基于邻接矩阵的 Floyd-Warshall 实现 Floyd-Warshall 算法是一种动态规划算法,适用于计算任意两点之间的最短路径。它的间复杂度为 \( O(V^3) \),其中 \( V \) 表示节点的数量。对于本题中的数据规模 (\( N \leq 100 \)),此算法完全适用。 下面是具体的实现方式: ```cpp #include <iostream> #include <algorithm> using namespace std; const int INF = 0x3f3f3f3f; int dist[105][105]; int n, m; void floyd() { for (int k = 1; k <= n; ++k) { // 中间节点 for (int i = 1; i <= n; ++i) { // 起始节点 for (int j = 1; j <= n; ++j) { // 结束节点 if (dist[i][k] != INF && dist[k][j] != INF) { dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]); } } } } } int main() { while (cin >> n >> m && (n || m)) { // 初始化邻接矩阵 for (int i = 1; i <= n; ++i) { for (int j = 1; j <= n; ++j) { if (i == j) dist[i][j] = 0; else dist[i][j] = INF; } } // 输入边的信息并更新邻接矩阵 for (int i = 0; i < m; ++i) { int u, v, w; cin >> u >> v >> w; dist[u][v] = min(dist[u][v], w); dist[v][u] = min(dist[v][u], w); // 如果是有向图,则去掉这一行 } // 执行 Floyd-Warshall 算法 floyd(); // 输出起点到终点的最短距离 cout << (dist[1][n] >= INF ? -1 : dist[1][n]) << endl; } return 0; } ``` --- #### 关键点解析 1. **邻接矩阵初始化** 使用二维数组 `dist` 存储每一对节点间的最小距离。初始状态下,设所有节点对的距离为无穷大 (`INF`),而同一节点自身的距离为零[^4]。 2. **输入处理** 对于每条边 `(u, v)` 和权重 `w`,将其存储至邻接矩阵中,并取较小值以防止重边的影响[^4]。 3. **核心逻辑** Floyd-Warshall 的核心在于三重循环:依次尝试通过中间节点优化其他两节点间的距离关系。具体而言,若从节点 \( i \) 到 \( j \) 可经由 \( k \) 达成更优解,则更新对应位置的值[^4]。 4. **边界条件** 若最终得到的结果仍为无穷大(即无法连通),则返回 `-1`;否则输出实际距离[^4]。 --- #### 性能评估 由于题目限定 \( N \leq 100 \),因此 \( O(N^3) \)间复杂度完全可以接受。此外,空间需求也较低,适合此类场景下的应用。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值