多线程:
什么是多线程:
- 理解:默认情况下,一个程序只有一个进程和一个线程,代码是依次线性执行的。而多线程则可以并发执行,一次性多个人做多件事,自然比单线程更快。
如何创建一个基本的多线程:
使用threading模块下的Thread类即可创建一个线程。这个类有一个target参数,需要指定一个函数,那么以后这个线程执行的时候,就会执行这个函数的代码。示例代码如下:
import time
import threading
def reading():
for x in range(3):
print("%d正在读..."%x)
time.sleep(1)
def writeing():
for x in range(3):
print("%d正在写..." % x)
time.sleep(1)
def multi_thread():
th1 = threading.Thread(target=coding)
th2 = threading.Thread(target=drawing)
th1.start()
th2.start()
if __name__ == '__main__':
multi_thread()
查看当前线程:
- threading.current_thread:在线程中执行这个函数,会返回当前线程的对象。
- threading.enumerate:获取整个程序中所有的线程。
继承自threading.Thread类:
- 我们自己写的类必须继承自
threading.Thread类。 - 线程代码需要放在run方法中执行。
- 以后创建线程的时候,直接使用我们自己创建的类来创建线程就可以了。
- 为什么要使用类的方式创建线程呢?原因是因为类可以更加方便的管理我们的代码,可以让我们使用面向对象的方式进行编程。
class CodingThread(threading.Thread):
def run(self) -> None:
the_thread = threading.current_thread()
for x in range(3):
print(f'{the_thread.name}正在coing-----{x}')
sleep(1)
class DrawingThread(threading.Thread):
def run(self) -> None:
the_thread = threading.current_thread()
for x in range(3):
print(f'{the_thread.name}正在drawing------{x}')
def mul_thread():
th1 = CodingThread(name='xiaohong')
th2 = DrawingThread(name='xiaoming')
th1.start()
th2.start()
if __name__ == '__main__':
mul_thread()
全局变量共享的问题:
在多线程中,如果需要修改全局变量,那么需要在修改全局变量的地方使用锁锁起来,执行完成后再把锁释放掉。
使用锁的原则:
- 把尽量少的和不耗时的代码放到锁中执行。
- 代码执行完成后要记得释放锁。
在Python中,可以使用threading.Lock来创建锁,lock.acquire()是上锁操作,lock.release()是释放锁的操作。
生产者和消费者模式:
生产者和消费者模式是多线程开发中经常见到的一种模式。生产者的线程专门用来生产一些数据,然后存放到一个中间的变量中。消费者再从这个中间的变量中取出数据进行消费。通过生产者和消费者模式,可以让代码达到高内聚低耦合的目标,程序分工更加明确,线程更加方便管理。
Lock版本的生产者和消费者模式:
import threading
import random
gMoney = 0
gLock = threading.Lock()
gTimes = 0
class Producer(threading.Thread):
def run(self) -> None:
global gMoney
global gTimes
while True:
gLock.acquire()
if gTimes >= 10:
gLock.release()
break
money = random.randint(0, 100)
gMoney += money
gTimes += 1
print("%s生产了%d"%(threading.current_thread().name,money))
gLock.release()
class Consumer(threading.Thread):
def run(self) -> None:
global gMoney
while True:
gLock.acquire()
money = random.randint(0,100)
if gMoney >= money:
gMoney -= money
print("%s消费了%d"%(threading.current_thread().name,money))
else:
if gTimes >= 10:
gLock.release()
break
print("%s想消费%d,但是余额只有%d"%(threading.current_thread().name,money,gMoney))
gLock.release()
def main():
for x in range(5):
th = Producer(name="生产者%d号"%x)
th.start()
for x in range(5):
th = Consumer(name="消费者%d号"%x)
th.start()
if __name__ == '__main__':
main()
Condition版本的生产者和消费者模式:
Lock版本的生产者与消费者模式可以正常的运行。但是存在一个不足,在消费者中,总是通过while True死循环并且上锁的方式去判断钱够不够。上锁是一个很耗费CPU资源的行为。因此这种方式不是最好的。还有一种更好的方式便是使用threading.Condition来实现。threading.Condition可以在没有数据的时候处于阻塞等待状态。一旦有合适的数据了,还可以使用notify相关的函数来通知其他处于等待状态的线程。这样就可以不用做一些无用的上锁和解锁的操作。可以提高程序的性能。首先对threading.Condition相关的函数做个介绍,threading.Condition类似threading.Lock,可以在修改全局数据的时候进行上锁,也可以在修改完毕后进行解锁。以下将一些常用的函数做个简单的介绍:
- acquire:上锁。
- release:解锁。
- wait:将当前线程处于等待状态,并且会释放锁。可以被其他线程使用notify和notify_all函数唤醒。被唤醒后会继续等待上锁,上锁后继续执行下面的代码。
- notify:通知某个正在等待的线程,默认是第1个等待的线程。
- notify_all:通知所有正在等待的线程。notify和notify_all不会释放锁。并且需要在release之前调用。
代码如下:
import threading
import random
import time
gMoney = 0
gCondition = threading.Condition()
gTimes = 0
class Producer(threading.Thread):
def run(self) -> None:
global gMoney
global gTimes
while True:
gCondition.acquire()
if gTimes >= 10:
gCondition.release()
break
money = random.randint(0, 100)
gMoney += money
gTimes += 1
print("%s生产了%d,剩余%d"%(threading.current_thread().name,money,gMoney))
gCondition.notify_all()
gCondition.release()
time.sleep(1)
class Consumer(threading.Thread):
def run(self) -> None:
global gMoney
while True:
gCondition.acquire()
money = random.randint(0,100)
while gMoney < money:
if gTimes >= 10:
print("%s想消费%d,但是余额只有%d了,并且生产者已经不再生产了!"%(threading.current_thread().name,money,gMoney))
gCondition.release()
return
print("%s想消费%d,但是余额只有%d了,消费失败!"%(threading.current_thread().name,money,gMoney))
gCondition.wait()
gMoney -= money
print("%s消费了%d,剩余%d"%(threading.current_thread().name,money,gMoney))
gCondition.release()
time.sleep(1)
def main():
for x in range(5):
th = Producer(name="生产者%d号"%x)
th.start()
for x in range(5):
th = Consumer(name="消费者%d号"%x)
th.start()
if __name__ == '__main__':
main()
线程安全的队列Queue:
在线程中,访问一些全局变量,加锁是一个经常的过程。如果你是想把一些数据存储到某个队列中,那么Python内置了一个线程安全的模块叫做queue模块。Python中的queue模块中提供了同步的、线程安全的队列类,包括FIFO(先进先出)队列Queue,LIFO(后入先出)队列LifoQueue。这些队列都实现了锁原语(可以理解为原子操作,即要么不做,要么都做完),能够在多线程中直接使用。可以使用队列来实现线程间的同步。相关的函数如下:
初始化Queue(maxsize):创建一个先进先出的队列。
- qsize():返回队列的大小。
- empty():判断队列是否为空。
- full():判断队列是否满了。
- get():从队列中取最后一个数据。默认情况下是阻塞的,也就是说如果队列已经空了,那么再调用就会一直阻塞,直到有新的数据添加进来。也可以使用
block=False,来关掉阻塞。如果关掉了阻塞,在队列为空的情况获取就会抛出异常。 - put():将一个数据放到队列中。跟get一样,在队列满了的时候也会一直阻塞,并且也可以通过block=False来关掉阻塞,同样也会抛出异常。
实战例子:
'''
多线程下载王者荣耀壁纸
'''
import requests
from urllib import parse
from urllib import request
import os
import threading
import queue
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36",
"Referer": "https://pvp.qq.com/web201605/wallpaper.shtml"
}
class Producer(threading.Thread):
def __init__(self,page_queue,image_queue,*args,**kwargs):
super(Producer, self).__init__(*args,**kwargs)
self.page_queue = page_queue
self.image_queue = image_queue
def run(self) -> None:
while not self.page_queue.empty():
page_url = self.page_queue.get()
resp = requests.get(page_url, headers=headers)
result = resp.json()
datas = result['List']
for data in datas:
image_urls = extract_images(data)
name = parse.unquote(data['sProdName']).replace("1:1", "").strip()
dir_path = os.path.join("images1", name)
# images1/猪八戒-年年有余
if not os.path.exists(dir_path):
os.mkdir(dir_path)
for index,image_url in enumerate(image_urls):
self.image_queue.put({"image_url":image_url,"image_path":os.path.join(dir_path,"%d.jpg"%(index+1))})
class Consumer(threading.Thread):
def __init__(self,image_queue,*args,**kwargs):
super(Consumer, self).__init__(*args,**kwargs)
self.image_queue = image_queue
def run(self) -> None:
while True:
try:
image_obj = self.image_queue.get(timeout=10)
image_url = image_obj.get("image_url")
image_path = image_obj.get("image_path")
try:
request.urlretrieve(image_url, image_path)
print(image_path + "下载完成!")
except:
print(image_path+"下载失败!")
except:
break
def extract_images(data):
image_urls = []
for x in range(1,9):
image_url = parse.unquote(data['sProdImgNo_%d'%x]).replace("200", "0")
image_urls.append(image_url)
return image_urls
def main():
page_queue = queue.Queue(18)
image_queue = queue.Queue(1000)
for x in range(0,18):
page_url = "https://apps.game.qq.com/cgi-bin/ams/module/ishow/V1.0/query/workList_inc.cgi?activityId=2735&sVerifyCode=ABCD&sDataType=JSON&iListNum=20&totalpage=0&page={page}&iOrder=0&iSortNumClose=1&iAMSActivityId=51991&_everyRead=true&iTypeId=2&iFlowId=267733&iActId=2735&iModuleId=2735&_=1554457680964".format(page=x)
page_queue.put(page_url)
for x in range(3):
th = Producer(page_queue,image_queue,name="生产者%d号"%x)
th.start()
for x in range(5):
th = Consumer(image_queue,name="消费者%d号"%x)
th.start()
if __name__ == '__main__':
main()
GIL:
什么是GIL:
提到多线程,必然会接触到GIL。Python自带的解释器是CPython。CPython解释器的多线程实际上是一个假的多线程(在多核CPU中,只能利用一核,不能利用多核)。同一时刻只有一个线程在执行,为了保证同一时刻只有一个线程在执行,在CPython解释器中有一个东西叫做GIL(Global Intepreter Lock),叫做全局解释器锁。这个解释器锁是有必要的。因为CPython解释器的内存管理不是线程安全的。当然除了CPython解释器,还有其他的解释器,有些解释器是没有GIL锁的,见下面:
- Jython:用Java实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/Jython
- IronPython:用.net实现的Python解释器。不存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/IronPython
- PyPy:用Python实现的Python解释器。存在GIL锁。更多详情请见:https://zh.wikipedia.org/wiki/PyPy
GIL虽然是一个假的多线程。但是在处理一些IO操作(比如文件读写和网络请求)还是可以在很大程度上提高效率的。在IO操作上建议使用多线程提高效率。在一些CPU计算操作上不建议使用多线程,而建议使用多进程。
有了GIL,为什么还需要Lock:
GIL只是保证全局同一时刻只有一个线程在执行,但是他并不能保证执行代码的原子性。也就是说一个操作可能会被分成几个部分完成,这样就会导致数据有问题。所以需要使用Lock来保证操作的原子性。

被折叠的 条评论
为什么被折叠?



