如何使用 Go 和 ANTLR 解析 SQL 查询中的 WHERE 子句
在本教程中,我们将学习如何使用 Go 语言结合 ANTLR 来解析 SQL 查询中的 WHERE
子句。我们将通过构建一个简单的 SQL 解析器来提取条件表达式,并对复杂的 SQL 查询进行递归解析。我们特别关注 Kubernetes 资源的 JSON 嵌套结构,因 Kubernetes 资源的字段路径是嵌套的,所以需要在解析时将 SQL 中的字段路径改写为适应 JSON 查询的格式。
背景信息
我正在开发一个开源项目 kom
,目标是实现通过 SQL 查询 Kubernetes 资源。因为 Kubernetes 资源是 JSON 格式的嵌套结构,而不是传统的 db.table 结构,所以在处理 SQL 查询中的 WHERE
语句时,必须先将像 x.y.z.m
这样的属性改写为一个整体的字段,以便能够正确查询 Kubernetes 中的资源。
步骤 1:定义 SQL 语法
首先,我们需要使用 ANTLR 来定义一个 SQL 语法(SQL.g4
),特别是针对 WHERE
子句中的常见表达式。ANTLR 会根据这个语法文件生成相应的代码,用于解析 SQL 查询。
SQL 语法定义(SQL.g4
)
grammar SQL;
parse : selectStatement;
selectStatement : 'SELECT' '*' 'FROM' table 'WHERE' condition;
table : IDENTIFIER;
condition
: condition AND condition # AndCondition
| condition OR condition # OrCondition
| '(' condition ')' # ParenthesizedCondition
| comparisonExpr # Comparison
| rangeExpr # RangeCondition
;
comparisonExpr
: field comparisonOperator value # ComparisonExpr
;
rangeExpr
: field 'BETWEEN' value 'AND' value # RangeExpr
;
comparisonOperator
: '=' | '!=' | '<' | '>' | '<=' | '>='
;
field : IDENTIFIER;
value : STRING | NUMBER | BOOLEAN | DATE;
BOOLEAN : 'TRUE' | 'FALSE';
NUMBER : [0-9]+;
STRING : '\'' [a-zA-Z0-9_]+ '\'';
DATE : '\'' [0-9]{4}-[0-9]{2}-[0-9]{2} '\'';
IDENTIFIER : [a-zA-Z_][a-zA-Z0-9_]*;
AND : 'AND';
OR : 'OR';
WS : [ \t\r\n]+ -> skip;
语法解释:
condition
表示 SQL 查询中的条件表达式,可以包含逻辑运算符AND
和OR
。comparisonExpr
处理基本的比较运算(例如=
、!=
、>
等)。rangeExpr
处理BETWEEN
表达式,用于区间匹配。field
和value
分别代表 SQL 中的字段名和条件值。
步骤 2:生成 Go 代码
在定义完 SQL 语法后,使用 ANTLR 工具生成 Go 语言的解析器代码。首先,安装 ANTLR 工具,并生成对应的 Go 代码。
安装 ANTLR 工具
brew install antlr
生成 Go 代码
在终端中运行以下命令,生成 Go 代码:
antlr4 -Dlanguage=Go SQL.g4
这将生成 Go 文件,包括:
SQLLexer.go
SQLParser.go
SQLListener.go
这些文件包含了用于 SQL 解析的代码,你可以在 Go 中调用这些生成的文件。
步骤 3:实现 SQL 解析逻辑
使用生成的 ANTLR 代码,我们编写 Go 代码来递归解析 SQL 查询,并提取 WHERE
子句中的条件。这里需要特别注意将嵌套的字段(例如 metadata.namespace.x.y
)转换为 JSON 查询格式。
Go 代码示例
package main
import (
"fmt"
"github.com/antlr/antlr4/runtime/Go/antlr"
"log"
"strings"
)
// Condition 结构定义
type Condition struct {
Depth int
AndOr string
Field string
Operator string
Value interface{}
ValueType string // "string", "number", "bool", "date"
}
// 自定义监听器
type SQLListener struct {
*antlr.DefaultParseTreeListener
Conditions []Condition
Depth int
AndOr string
}
func (l *SQLListener) EnterComparisonExpr(ctx *SQLParserComparisonExprContext) {
field := ctx.Field().GetText()
operator := ctx.ComparisonOperator().GetText()
value := ctx.Value().GetText()
// 处理字段路径
field = strings.ReplaceAll(field, ".", "_") // 将 x.y.z 转换为 x_y_z 形式
// 处理字段和运算符
condition := Condition{
Depth: l.Depth,
AndOr: l.AndOr,
Field: field,
Operator: operator,
Value: strings.Trim(value, "'"), // 去除字符串的单引号
ValueType: "string", // 默认值是字符串类型
}
l.Conditions = append(l.Conditions, condition)
}
func (l *SQLListener) EnterRangeExpr(ctx *SQLParserRangeExprContext) {
field := ctx.Field().GetText()
operator := "BETWEEN"
value := ctx.Value(0).GetText() + " AND " + ctx.Value(1).GetText()
// 处理BETWEEN表达式的字段路径
field = strings.ReplaceAll(field, ".", "_") // 将 x.y.z 转换为 x_y_z 形式
// 处理BETWEEN表达式
condition := Condition{
Depth: l.Depth,
AndOr: l.AndOr,
Field: field,
Operator: operator,
Value: value,
ValueType: "range", // 设置范围类型
}
l.Conditions = append(l.Conditions, condition)
}
func (l *SQLListener) EnterAndCondition(ctx *SQLParserAndConditionContext) {
// 递归解析AND条件
l.AndOr = "AND"
}
func (l *SQLListener) EnterOrCondition(ctx *SQLParserOrConditionContext) {
// 递归解析OR条件
l.AndOr = "OR"
}
func (l *SQLListener) EnterParenthesizedCondition(ctx *SQLParserParenthesizedConditionContext) {
// 递归解析括号中的条件
l.Depth++
}
// 解析 SQL 查询并输出结果
func parseSQL(sql string) []Condition {
// 1. 创建输入流并初始化 Lexer 和 Parser
input := antlr.NewInputStream(sql)
lexer := NewSQLLexer(input)
tokens := antlr.NewCommonTokenStream(lexer, antlr.TokenDefaultChannel)
parser := NewSQLParser(tokens)
// 2. 初始化监听器
listener := &SQLListener{
Conditions: []Condition{},
Depth: 0,
AndOr: "",
}
antlr.ParseTreeWalkerDefault.Walk(listener, parser.Parse())
// 3. 返回所有解析的条件
return listener.Conditions
}
func main() {
sql := "SELECT * FROM pod WHERE metadata.namespace = 'kube-system' AND spec.replicas BETWEEN 2 AND 5"
// 解析 SQL
conditions := parseSQL(sql)
// 打印条件
for _, cond := range conditions {
fmt.Printf("Condition: %+v\n", cond)
}
}
代码解释:
- Condition 结构:表示解析出的 SQL 条件,包含条件的字段、运算符、值、值类型等信息。
- SQLListener:是一个自定义监听器,用于处理 SQL 解析过程中遇到的各种条件表达式。我们在监听器中处理
ComparisonExpr
(比较表达式)、RangeExpr
(范围表达式)、AND
、OR
、ParenthesizedCondition
(括号表达式)等。 - 字段路径处理:在
EnterComparisonExpr
和EnterRangeExpr
方法中,我们将 SQL 查询中的嵌套字段(如metadata.namespace.x.y
)转换为metadata_namespace_x_y
形式,适应 Kubernetes JSON 格式。 - parseSQL 函数:初始化解析器并使用监听器来解析 SQL 查询。
- main 函数:执行 SQL 解析并输出解析后的条件。
输出:
对于 SQL 查询:
SELECT * FROM pod WHERE metadata.namespace = 'kube-system' AND spec.replicas BETWEEN 2 AND 5
程序输出的条件将是:
Condition: {Depth:0 AndOr: AND Field:metadata_namespace Value:kube-system ValueType:string}
Condition: {Depth:1 AndOr: AND Field:spec_replicas Value:2 AND 5 ValueType:range}
步骤 4:总结
通过本教程,你学到了如何:
1
. 使用 ANTLR 定义 SQL 语法并生成 Go 语言代码。
2. 在 Go 中使用 ANTLR 生成的代码来解析 SQL 查询,特别是 WHERE 子句中的条件表达式。
3. 处理 Kubernetes 资源的 JSON 嵌套结构,将 SQL 查询中的字段路径(如 metadata.namespace
)转换为适合 JSON 查询的格式。
这为实现使用 SQL 查询 Kubernetes 资源奠定了基础。