最近在arxiv上逛逛,看到一篇关于colorization的paper觉得挺有意思的:
Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification - sig - 2016
作者开源了代码:
https://github.com/satoshiiizuka/siggraph2016_colorization
===
先看看效果,从Fig1可以看出,该论文能够很好地从gray image还原到color image,效果不错。
motivation:
对于纹理区域,如天空,草地,树叶,街道,墙,海面等这些,
如何利用全局和局部的信息,使得网络可以充分学习到并区分到?
如何利用context的信息来区分不同场景下的图像,如indoor,outdoor?
所有该paper的核心研究内容是:如何充分利用global,local,semantic context信息,来更好地训练网络模型:
1 user-intervention-free的方式,即不需要用户的干涉,例如graphcut需要用户的操作,而它是不需要的;
2 end-to-end的网络,能够同时学习到图像的global和local的features;
本文介绍了一篇关于自动图像着色的研究论文,该论文提出了一种无需用户干预的端到端网络,能同时学习图像的全局和局部特征,并利用语义上下文信息进行分类。通过结合低层、中层和高层特征网络,以及颜色网络,模型能够将灰度图像恢复为色彩图像。研究重点在于利用全局信息进行风格迁移,并通过类别信息区分不同场景。虽然模型在不同场景和旧图像上表现良好,但可能无法处理多种可能的色彩映射情况。
最低0.47元/天 解锁文章
821

被折叠的 条评论
为什么被折叠?



