自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

小一的专栏

坚持、努力、谦逊

  • 博客(671)
  • 资源 (8)
  • 收藏
  • 关注

原创 把 Multi-Head Attention 讲“明白”:一句话、一个例子、再到工程落地

摘要: 多头注意力(MHA)通过并行多组注意力机制增强模型对上下文的捕捉能力。单头注意力只能聚焦单一关系(如语法或语义),而MHA让不同头专注不同任务(如指代消歧、长距离依赖等),最后融合结果。以“订机票”为例,模型需同时关注时间、地点等关键信息,MHA通过拆分Q/K/V到多个子空间实现这一目标。工程实现中需注意:1)注意力分数计算(Q@K^T)与归一化;2)因果mask防止解码器偷看未来信息;3)多头输出的拼接与线性融合。MHA的核心价值在于让模型同时学习多种上下文关系,提升表示能力。

2026-02-06 16:36:24 85

原创 别再被 AI 黑话“收智商税”了:讲透 Agent / RAG / MCP / Skill 的通用工程解法

摘要 当前AI领域的RAG、Agent、MCP、Skill等术语本质上都是为弥补大语言模型的三大短板:缺乏私有知识、实时性和执行能力。这些概念并非"黑科技",而是可拆解的系统组件: RAG(检索增强生成)通过先检索相关材料再输入模型来补充知识 Agent通过工具调用和循环控制实现任务执行 MCP提供标准化的工具连接层 Skill是可复用的工作流程片段 工程实现需关注: 数据检索质量(召回率、排序、切片) 工具调用的可靠性(Schema约束) 工作流编排(循环控制、失败处理) 记忆管理(短

2026-02-05 10:38:22 570

原创 Google AI Agent 白皮书拆解(1):从《Introduction to Agents》看清 Agent 的工程底座

- 一句话结论:Agent 不是“更会聊天的 LLM”,而是一个可构建、可运行、可治理的软件工程系统:用模型在可重复的控制回路里做事,并在工具、上下文、部署与治理上补齐“生产级能力”。- 落地路径:先把 Level 1(事实闭环)跑稳,再做 Level 2(上下文工程),最后才谈多智能体与规模化治理。- 最大风险:多数团队“只做了模型 + 工具”,缺了编排层与运行时,导致 Demo 很美、生产必翻车。

2026-02-02 15:19:19 1132

原创 多智能体(Multi-Agent)架构选型:四种模式,一张图看懂

多智能体架构选型摘要:多智能体通过更高系统复杂度换取上下文隔离、并行化和流程可控性。核心选型原则包括:强控制权选Subagents(主-子架构),单Agent多专业选Skills,多阶段流程选Handoffs(状态驱动),多领域并行选Router(路由分发)。四种模式对比:Subagents适合集中编排但延迟高,Skills轻量但易上下文污染,Handoffs流程可控但状态管理复杂,Router并行高效但路由风险大。决策时需评估是否必须上下文隔离、并行执行或状态机需求,否则优先考虑单Agent+工具方案。

2026-02-02 15:18:16 605

原创 多智能体(Multi-Agent)架构选型:四种模式,一张图看懂

多智能体架构选型摘要:多智能体通过更高系统复杂度换取上下文隔离、并行化和流程可控性。核心选型原则包括:强控制权选Subagents(主-子架构),单Agent多专业选Skills,多阶段流程选Handoffs(状态驱动),多领域并行选Router(路由分发)。四种模式对比:Subagents适合集中编排但延迟高,Skills轻量但易上下文污染,Handoffs流程可控但状态管理复杂,Router并行高效但路由风险大。决策时需评估是否必须上下文隔离、并行执行或状态机需求,否则优先考虑单Agent+工具方案。

2026-01-28 20:33:45 1021

原创 Agent Skill 入门:把多步推理与工具调用固化为可复用流程

摘要 Agent Skill是一种将复杂任务流程封装为可复用技能包的方法,包含触发条件、执行步骤、输入输出格式等规范。它通过SKILL.md文档定义工作流程,配合reference参考材料和scripts确定性脚本,实现任务的稳定执行和团队协作复用。与人类学习骑车的类比类似,Agent Skill将多步推理和工具调用固化为可自动执行的流程。典型结构包含SKILL.md、reference/和scripts/目录,通过明确触发条件、输入校验、结构化输出等工程化约束,确保技能执行的可靠性和一致性。最小示例展示了

2026-01-28 17:15:42 498

原创 从“帮同事整理会议记录”看懂 Transformer

摘要 Transformer模型是一种高效的信息处理架构,其核心创新在于并行化的注意力机制。与传统序列模型(如RNN/LSTM)的串行处理不同,Transformer采用类似"超市自助结账"的并行方式,让所有输入信息同时处理,同时通过注意力机制动态捕捉关键关联。模型分为Encoder和Decoder两部分:Encoder将杂乱输入整理为结构化语义表示,Decoder则基于此生成目标输出。这种架构不仅大幅提升了处理速度,还能更好地理解长距离语义关系。从工程角度看,理解Transformer

2026-01-28 16:02:17 567

原创 AI 时代黄金产品研发指南:从赛道选择到技术落地的实战手册

- 先搞清“上游增量”还是“下游优化”:选错赛道,再强技术也可能在替巨头做功能验证。- 需求验证不要只看“模型准确率”,要看端上是否形成闭环:用户能不能完成任务/会不会留下来/失败时是否能继续走下去。- 技术落地优先“成熟模型 + 微调 + 工程封装”,避免早期陷入“底层重研发”的工程壁垒陷阱;端上重点是缓存、降级、取消与队列。- 体验设计要“藏复杂于无形”:把“参数/术语”翻译成用户能理解的目标语言(如“更鲜艳”);端上交互要可撤销、可恢复、可解释。- 商业化与生存靠成本模型与节奏:算力成本与端上

2026-01-27 15:00:44 831

原创 从 Vibe 到 Spec:让 AI 编程在客户端工程里可控、可验收、可合入

Vibe 用来“找方向”,不要直接交付Spec 用来“交付与合入”,把不确定性前移到文档阶段想让 AI 编程更稳定,关键不是更长的 Prompt,而是更严谨的 Context + 闸门流程 + 可复用的 Skills。

2026-01-23 16:52:43 772

原创 Kotlin 2.0+ 新特性:客户端开发者真正用得上的变化

Kotlin 2.0+ 新特性解析:客户端开发实用指南 Kotlin 2.0+ 的核心升级在于K2编译器的全面启用,为客户端开发带来三大变化: 编译优化:K2编译器全平台稳定,显著提升编译速度和IDE分析准确性,支持JVM/Native/Wasm/JS多端一致开发体验 语言增强: 更智能的类型推断和smart cast,减少冗余类型转换 改进when表达式语法,支持更直观的条件分支 增强Contracts机制,让编译器更理解业务逻辑约束 工程实践: JVM平台lambda默认使用invokedynamic,

2026-01-22 14:36:32 593

原创 Kotlin 2025–2026 客户端开发路线:语言升级 × 跨端落地 × AI Agent 入门

Kotlin 2025-2026 客户端开发路线聚焦三大方向:语言升级、跨端落地和AI Agent入门。Kotlin 2.x将保持每6个月的语言大版本更新节奏,K2编译器及IDE模式带来显著性能提升。跨端开发进入工程化阶段,KMP负责业务逻辑共享,Compose Multiplatform实现UI共享。JetBrains推出的Koog框架为端侧AI应用开发提供支持。文章详细解析了K2编译器的优势、KMP/CMP的工程实践方案,并提供了版本对齐、跨端架构设计等实用建议,同时提醒注意工程化过程中的潜在风险。

2026-01-19 11:49:22 1013

原创 Kotlin Multiplatform + 声明式 UI 三端实战:从工程结构到鸿蒙适配

本文介绍了使用 Kotlin Multiplatform (KMP) 实现三端(Android/iOS/鸿蒙)共享业务逻辑和声明式 UI 的工程实践方案。文章首先明确了跨端开发的三大核心目标:业务逻辑共享、UI一致性保持和工程可持续性,并提出了分层架构模型,强调将平台差异收敛为稳定接口。 在工程结构方面,推荐采用"Common+Platform Main"的模块化设计,将共享代码按功能域拆分,使各业务模块能独立演进。对于平台差异处理,文章详细讲解了expect/actual机制的基础用法

2026-01-16 11:21:55 1343

原创 Kotlin 协程:像写同步代码一样写异步逻辑

Kotlin协程通过同步代码结构实现异步逻辑,避免了传统线程和回调的缺点。核心在于"挂起"而非阻塞线程,类似餐厅服务员高效处理多个任务。使用协程需要三个要素:作用域(Scope)、挂起函数(suspend)和构建器(launch/async)。其中launch用于无返回值任务,async用于需要返回值的并发操作。挂起函数(suspend)标记耗时操作,只能在协程或另一个挂起函数中调用。协程通过这种机制实现了用少量线程处理大量并发任务的能力,使代码更简洁易读。

2026-01-15 21:49:13 800

原创 客户端团队 Agentic Coding 工程指南:原理与最佳实践

本文档是 Agentic Coding 的工程指南,旨在帮助开发者高效驾驭 AI。核心在于理解 AI 的“预测”本质与上下文瓶颈,避免长对话引发的幻觉。核心实践:1. 短对话原则 :坚持 One Session One Task ,一旦 AI 开始“车轱辘话”或任务完成,立即开启新对话,保持上下文纯净。2. 任务拆解 :将复杂需求拆解为调研、实现、测试等多轮独立对话。3. 工程规范 :利用 AGENTS.md 作为项目“入职手册”提供背景,采用文档驱动开发(DDD)先规划后编码。

2026-01-15 15:35:13 829

原创 KMP 多平台业务落地实践指南 (2025)

KMP跨端落地实战:大型App迁移经验总结 本文分享了Kotlin Multiplatform(KMP)在大型App中的落地实践。面对鸿蒙适配和代码复用需求,团队采用渐进式迁移策略,通过语法转换、平台解耦和多端产物编译,实现了70%业务覆盖率和30%+的提效效果。关键技术包括"胶水层注入"设计、对象代理模式管理数据模型,以及跨语言调用时的生命周期管理方案(如Cleaner API和WeakReference)。实践表明,KMP能有效解决迁移速度、线上稳定性和长期工程成本三大核心问题,为跨

2026-01-15 14:19:29 775

原创 从客户端负责人视角落地 Agentic Coding(基于 Trae):认知、流程、工程化与长期建设

Agentic Coding 客户端落地摘要本文档旨在将 Agent 从“代码补全工具”升级为**“可控的客户端交付流水线”**。核心策略是利用 Trae 的 **Builder (SOLO) 模式**的主动规划与执行能力,配合 **Chat 模式**辅助,并将 Agent 锁定在**“规范(AGENTS.md) + 工具 + 证据 + 闸门”**的闭环流程中。

2026-01-13 19:58:16 1081

原创 期权交易入门:用买房讲透 Call/Put 与行权指派(含富途牛牛实操)

期权本质类似买房定金协议,买方支付权利金获得未来按约定价格交易的权利,卖方收取费用但承担履约义务。期权分为看涨(Call)和看跌(Put)两类,分别对应买入和卖出权利。实值(ITM)期权到期时会自动行权,虚值(OTM)则归零。新手建议采用保护性看跌、备兑看涨或纯投机策略,并注意到期前平仓避免被动交割。关键要分清买方(风险有限)和卖方(风险较大)的不同责任,理解自动行权规则,才能有效管理期权交易风险。

2026-01-09 15:02:20 787

原创 AI 时代旧敏捷开发的核心矛盾与系统困境

AI时代旧敏捷方法论面临系统性失效:虽然AI显著提升个体编码效率(部分任务提速近2倍),但组织层面68%的开发者节省的时间被流程摩擦抵消(Atlassian数据)。核心矛盾在于:旧敏捷为"代码稀缺时代"设计,其六个关键假设与AI开发特性产生根本冲突:1)度量指标陷入"伪效率"陷阱;2)流程设计造成评审/测试环节堵塞;3)分工模式未适配人机协同需求。破局需重构操作系统:30天内识别价值流瓶颈,60天将规范转化为自动化闸门,90天建立AI-native分工体系(Spec

2026-01-09 14:46:43 839

原创 Google A2UI 协议深度解析:AI 生成 UI 的机遇与实践(客户端视角,Android/iOS 都能落地)

适用读者:Android / iOS / 跨端同学、做 AI 应用落地的端侧负责人关键词:Agent-driven UI / Server-driven UI / JSONL + SSE 流式协议 / 组件白名单 Catalog / 结构与数据解耦重要提示:A2UI 目前仍处于 v0.8 Public Preview(早期阶段),规范与实现会持续演进,落地要把“可变更”当作前提。

2026-01-07 15:30:46 1393

原创 Google A2UI 入门:让 Agent “说 UI”,用声明式 JSON 安全渲染到原生界面

Google A2UI 是一种让AI助手安全生成可交互界面的方案,通过声明式JSON描述UI结构,客户端用原生组件渲染。它解决了纯文本交互效率低的问题,采用组件白名单确保安全,支持增量更新优化体验。A2UI配合AG-UI协议实现双向交互,已在Google产品中应用。核心优势是让AI生成的界面既灵活又安全可控,适合生产环境部署。

2026-01-05 21:39:34 1872

原创 GPT-5 时代提问术:为什么有人觉得“变强了但更难用”?以及让回复质量飙升的 11 个技巧(附可直接复制的模板)

摘要: GPT-5的两大核心改进是:1)从多模型整合为统一系统+智能路由,根据任务复杂度自动调用不同模型;2)对指令理解更精准,但模糊需求易触发默认响应。为提升输出质量,建议:拆解任务步骤、多轮迭代对话、明确角色约束、提供风格样例、管理上下文记忆、触发深度推理、多模型对比互补、固化偏好指令、利用Projects管理长期任务、自我批评改稿、建立提示词模板库。结合这些技巧,可构建高效工作流(如写作、决策、项目管理)。关键是将GPT-5视为可管理的协作系统,而非单纯工具。

2026-01-04 11:45:28 442

原创 Transformer 原理入门:从“货拉拉拉不拉拉布拉多”讲清 Attention、QKV 与编码器/解码器(小白也能懂)

《Attention is All You Need》提出的Transformer架构成为AI大模型的基础。本文从翻译问题切入,用通俗语言解释其核心组件:通过Token/Embedding将文字数字化,QKV机制让每个词具备查询能力,注意力机制动态分配上下文权重,多头注意力并行捕捉多种语义关系。编码器理解输入语义,解码器通过掩码自注意力和交叉注意力逐词生成翻译,残差连接和归一化确保训练稳定。该架构衍生出BERT(仅编码器)、GPT(仅解码器)和经典翻译模型(编码器-解码器)三种形态,彻底改变了自然语言处理领

2026-01-04 11:20:47 525

原创 Agent Skills 入门:把“公司 SOP + 工具脚本”封装成可复用技能,让 Agent 真正在你团队里干活(并对比 MCP)

摘要: Agent Skills通过封装企业SOP和工具脚本为可复用技能,解决Agent落地中的流程重复与Prompt臃肿问题。其核心是渐进式披露机制:按需加载元数据、指令和资源,显著降低token消耗。一个完整的Skill包含SKILL.md(规则)、reference(参考资料)和scripts(确定性操作脚本),形成Agent的“工具箱”。与MCP(负责数据连接)互补,二者结合可实现企业级Agent部署。示例演示了会议纪要Skill的构建,涵盖财务合规提醒与自动上传功能,体现模块化设计优势。

2026-01-02 12:55:04 1246

原创 AI 越来越强,为啥你却越来越“无感”?——用工程师的“三条曲线”拆解割裂感,并给出一套可落地用法

摘要:本文分析了AI能力快速提升与用户"无感"之间的割裂现象,提出三条关键曲线模型:能力曲线快速上升,但可用性曲线(系统集成)和责任曲线(可验证性)滞后。作者指出真正阻碍AI落地的往往是非算法问题,如数据接入、输出验证和责任归属。文章建议采用工程化思维,通过结构化任务定义、质量门禁和收益量化来构建可验收的AI应用闭环。最后强调,这种割裂感标志着AI应用正从技术崇拜转向系统工程阶段,关注可靠性将比单纯追求智能更重要。(149字)

2025-12-31 13:59:52 687

原创 LangChain 入门:把大模型“组装”成应用的那套乐高(5分钟用通义千问 + LCEL 跑通 Demo)

本文介绍了如何快速使用LangChain和通义千问搭建一个"AI短文生成器"应用。主要内容包括: 5分钟快速实现:安装依赖、配置API Key、使用LCEL(LangChain表达式语言)构建Prompt→模型→解析器的基础链。 三种实用扩展: 流式输出:实现逐段生成效果 结构化JSON输出:便于数据存储和前端渲染 并行生成:同时获取标题、摘要、标签和正文 进阶路线建议:从基础功能扩展到RAG知识库、链路追踪、Agent工具调用等高级特性。 文章提供了可直接运行的代码示例,帮助开发者快速

2025-12-26 11:42:38 549

原创 别再把 40 万 Context 当 40 万字!一文搞懂 Token/Tokenizer(BPE)与字数换算

本文解释了Token和Tokenizer的核心概念:Token是大模型处理文本的基本单位,不同于字词;Tokenizer作为"翻译官+压缩机",通过BPE算法训练,将文字与数字互转。BPE训练过程通过统计合并高频片段来优化词表,使常见文本更省Token。使用时需注意编码(拆合编号)和解码(查表拼接)过程可能导致半词或异常空格。Token与字数换算关系约为:1Token≈1.5-2汉字/0.75英文单词/4英文字母,但实际值受文本类型影响较大。关键提示包括:用Token预算而非字数规划上下

2025-12-15 17:34:28 893

原创 从「思考」到 ReAct:AI 智能体是怎么一步步想清楚再动手的?

本文梳理了AI智能体从思考到行动的演进路径,重点解析了Thought、CoT和ReAct三个关键概念。Thought是智能体的内部推理过程,用于任务拆解和决策;CoT(思维链)通过逐步推理解决纯思维任务;ReAct则结合推理与工具调用,实现"思考-行动"循环。文章对比了CoT与ReAct的适用场景,并指出新一代模型(如DeepSeek R1)将推理-答案分离作为内置能力。最后提出了智能体开发的实践建议,强调根据任务性质选择合适的方法论组合。这些概念为设计高效AI智能体提供了清晰的思路框架

2025-12-09 14:20:33 1139

原创 用“课堂传纸条”搞懂 HTTPS,加密、公钥、CA 和手机里那些神秘的根证书

HTTPS通过加密和认证机制确保网络通信安全。文章以"课堂传纸条"为喻,生动解释了对称加密(共享密钥)与非对称加密(公钥/私钥)的原理,指出密钥分发是核心难题。非对称加密可安全传输对称密钥,但仍面临中间人攻击风险。数字签名和CA(证书机构)体系解决了公钥真实性问题:CA用私钥为网站公钥签名生成证书,浏览器通过预置的根证书验证证书链的合法性。整个信任体系建立在操作系统预置的可信根证书基础上,形成完整的HTTPS安全保障机制。

2025-12-09 11:57:13 1125

原创 通过「思考-行动-观察」循环,重新理解 AI 智能体

AI 智能体通过"思考-行动-观察"循环实现复杂任务处理。智能体以LLM为核心,通过Thought阶段决策下一步行动,Action阶段调用工具获取数据,Observation阶段整合结果并继续推理。这种循环机制使智能体能够动态处理多步骤任务,实时纠错并提高适应性。工程实现需关注系统提示、工具设计和结果处理,使智能体具备记忆和自优化能力,最终成为能自动完成复杂任务的"带工具循环系统"。

2025-12-07 21:29:41 1112

原创 Vision Transformer(ViT)入门:把图像“变成序列”

摘要 本文系统阐述了从普通手机GPS到厘米级高精度定位的技术演进路径。首先分析了手机GNSS的局限性,包括单频定位精度低(2-5米)、采样率仅1Hz等问题。随后介绍了外置专业GNSS设备的优势,如10-25Hz采样率和更好的抗干扰性。关键突破在于RTK技术,通过基准站差分和载波相位测量实现厘米级精度。最后提出IMU+GNSS的传感器融合方案,利用100Hz的惯性测量单元填补GNSS采样间隙,通过卡尔曼滤波算法实现平滑、连续的厘米级轨迹重建,满足赛道竞速等专业场景对定位精度的严苛要求。

2025-12-07 20:43:20 770

原创 从手机 GPS 到厘米级定位:一辆卡丁车的“定位进化史”

摘要 本文系统阐述了从普通手机GPS到厘米级高精度定位的技术演进路径。首先分析了手机GNSS的局限性,包括单频定位精度低(2-5米)、采样率仅1Hz等问题。随后介绍了外置专业GNSS设备的优势,如10-25Hz采样率和更好的抗干扰性。关键突破在于RTK技术,通过基准站差分和载波相位测量实现厘米级精度。最后提出IMU+GNSS的传感器融合方案,利用100Hz的惯性测量单元填补GNSS采样间隙,通过卡尔曼滤波算法实现平滑、连续的厘米级轨迹重建,满足赛道竞速等专业场景对定位精度的严苛要求。

2025-12-04 19:32:21 1311

原创 卡尔曼滤波通俗讲解:智能汽车的传感器融合实战

- 传感器融合用来综合不同来源的观测,提升稳定性与精度;卡尔曼滤波是线性高斯场景下的“最优融合器”。- 用“一室两温度计”的故事引入加权平均思想,再把加权平均搬到时间轴上(预测 + 更新)。- 给出一维卡尔曼的核心公式与直觉,扩展到多维与多传感器的工程实践。- 结合智能汽车的“高精定位”和“目标跟踪”,说明卡尔曼滤波在哪里发光,以及冲突观测如何处理。- 附可运行的 Python 1D Demo 与 Mermaid 信息流心智图,便于快速上手与复习。

2025-12-04 16:53:38 826

原创 在 Android 上获取视频流逐帧时间戳并与 GPS/IMU 对齐(CameraX 实践)

本文详细介绍了在Android平台上获取视频流逐帧时间戳并与GPS/IMU数据对齐的实现方案。通过CameraX的ImageAnalysis获取每帧图像的纳秒级时间戳,使用FusedLocationProvider采集GPS数据,统一基于系统单调时钟(elapsedRealtimeNanos)进行时间对齐。文章提供了完整的Kotlin实现代码,包括帧时间戳记录器、GPS记录器以及Activity集成方案,解决了视频防抖、传感器数据挂载等场景下的时间同步问题,并支持输出JSON格式的帧信息和GPS数据用于后续

2025-12-04 15:29:27 1022

原创 从函数到 Agent:LLM Tools 全面指南(工程落地版)

摘要: 本文详细介绍了LLM工具(Tools)的工程化落地方法,重点解决LLM在实时信息获取、可靠计算和外部系统调用方面的短板。Tools本质是为LLM封装的函数,包含名称、描述、参数和可执行对象。通过函数签名+装饰器可自动生成结构化工具描述,避免手动维护。完整调用链路包括:工具描述→调用建议→真实执行→结果回填→自然语言回复。推荐采用MCP(Model Context Protocol)标准化接口,实现跨框架和模型复用。工程落地需关注工具定义标准化、调用桥接实现和调试时工具描述的清晰性。最终目标是构建能&

2025-12-03 20:11:43 880

原创 从聊天记录到单一 Prompt:搞懂 Messages、Chat Templates、Special Tokens

文章摘要 本文解析了大模型对话中的消息处理机制,重点介绍了Messages、Chat Templates和Special Tokens的概念。实际对话在模型眼中会被拼接成单一Prompt字符串,而非多轮对话。消息分为System(系统规则)、User(用户输入)和Assistant(模型回复)三类,其中System消息影响全局行为。不同模型需要特定的Chat Template来规范消息格式,避免直接拼接字符串导致的兼容性问题。transformers库提供了apply_chat_template()方法,可

2025-12-03 17:55:51 885

原创 一文彻底搞懂 LLM:从 Transformer 到智能体大脑

AI智能体入门:从概念到实践 摘要:本文介绍了AI智能体(Agent)的核心概念与技术架构。智能体代表AI从"能聊天"到"能做事"的进化,由大语言模型(大脑)和工具集(身体)组成,具备理解、推理和执行能力。文章解析了智能体的5级自主能力图谱(从简单处理到多智能体协作),列举了典型应用场景(虚拟助手、客服系统等),并提供了工程落地建议:从单工具调用开始,逐步扩展到多步骤任务。作为Hugging Face智能体系列教程的第一课,本文为开发者建立了智能体的基础认知框架,后续

2025-12-02 15:47:00 900

原创 [特殊字符] AI Agents 入门 · Hugging Face 系列 Lesson 1

AI智能体入门:从概念到实践 摘要:本文介绍了AI智能体(Agent)的核心概念与技术架构。智能体代表AI从"能聊天"到"能做事"的进化,由大语言模型(大脑)和工具集(身体)组成,具备理解、推理和执行能力。文章解析了智能体的5级自主能力图谱(从简单处理到多智能体协作),列举了典型应用场景(虚拟助手、客服系统等),并提供了工程落地建议:从单工具调用开始,逐步扩展到多步骤任务。作为Hugging Face智能体系列教程的第一课,本文为开发者建立了智能体的基础认知框架,后续

2025-12-01 16:31:27 794

原创 一文搞懂 Temperature 与 Top-p:原理、图解与调参建议

Temperature与Top-p调参指南 Temperature和Top-p是控制大模型输出随机性的核心参数: Temperature(0.1-2.0):调节概率分布陡峭程度,值越高输出越发散(物理温度类比) Top-p(0-1):按累计概率筛选候选词,值越小输出越聚焦(如0.9保留90%高概率词) 应用建议: 严谨场景(代码/推理):Temp=0-0.2 + Top-p=0.2-0.5 创意场景(写作/脑暴):Temp=1.0-1.8 + Top-p=0.9-1.0 通用设置:Temp=0.7 + To

2025-12-01 11:41:27 1481

原创 卡丁车不过弯?不是车不行,是你没掌握「向心力 + 1:1 机械刹车」

卡丁车过弯技巧解析:物理原理与机械特性是关键 卡丁车作为无助力机械,其操控完全依赖驾驶者对物理原理和机械反馈的掌控。过弯速度的核心制约是向心力公式(F=mv²/r),通过增大转弯半径(r)而非单纯减速才能保持高速。刹车系统采用1:1机械直连,需踩至99%行程才有效,多数减速不足是因未踩到位。 关键要点: 走线策略:采用外→内→外弧线最大化转弯半径,而非盲目切弯心。 操作时机:提前刹车至可控速度,车头指向出口即加油(非完全出弯后),方向需小幅恒定输入。 常见误区:转向费力、出弯动力滞后多因刹车不足、走线错误或

2025-11-12 17:14:11 465

原创 Gyroflow 说人话教程:用手机陀螺仪把“卡丁车抖成地震”的视频变稳

适用人群:只想把视频稳住的工程师 / 车载拍摄党 / Android 开发一句话总结:Gyroflow 不是“图像算法防抖”,它是用手机的陀螺仪数据去反算相机在每一帧的抖动,然后把画面反向扭回来。

2025-11-12 17:01:02 1330 1

LAMP基础学习

这是我四个月来总结的lamp的经验,非常适合初学者阅读,请大家尽情下载,支持开源

2011-10-10

apt-mirror搭建ubuntu本地仓库源

我自己总结的如何搭建ubuntu本地仓库源,非常具有参考价值,和大家共享一下

2011-08-22

Android打包boot.img工具mkbootfs

用于Android打包boot.img文件,主要是针对ramdisk

2014-07-08

ExpandableListView小项目展示

博客里讲解了自己利用ExpandableListView实现的一个Demo,大家可以下载参考。

2014-06-21

windows scoket编程

windows socket编程,两个程序,一个客户端,一个服务器端,实现了服务器端监听客户端的请求,客户端发送数据包,服务器段接收并返回。说白了,就是中国传媒大学研究生计算机网络的第7次实验

2011-11-28

ActiveAndroid-3.0-JAR包

ActiveAndroid 3.0版本的jar包.

2016-12-02

关于ntp服务器搭建

我自己总结的如何搭建ntp服务器,希望大家也能从中学到知识.

2011-08-22

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除