单阶段目标检测算法YOLOv3

YOLOv3从v1和v2的基础上进行改进,主要如下: 

(1)更大的骨干网络DarkNet-53,可以进行多尺度预测,跨尺度特征融合

(2)多尺度预测,最终是3个尺度的特征图上目标检测

Darknet-53骨干网络进行特征提取,网络分为5个阶段,经过每个绿色的res是一个2倍的下采样,最多是32倍

32倍的下采样再经过特征提取后输出为y1的特征图 32倍到输出中间的特征图拿出来和上一次的16倍下采样进行拼接,拼接之前对32倍的下采样进行上采样使其和16倍下采样的特征图变成一样大小,2者进行concat再进行特征提取输出第二张特征图y2 第三张特征图的输出类似 3张特征图y1,y2,y3分别对应32,16,8倍的下采样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值