关于滑动平均模型:
实际的原理是对参数的更新进行一阶之后滤波
对每一个参数会维护一个影子变量shadow_variable
shadow_variable = shadow_variable * decay + (1 - decay) * variable
decay 决定了模型的更心速度
返回值:ExponentialMovingAverage对象,通过对象调用apply方法可以通过滑动平均模型来更新参数。
num_updates参数来动态设置参数的大小
decay = min{decay, (1+num_updates)/(10+num_up_dates)}









阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

关于滑动平均模型:

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭