Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network
背景:现有模型存在两个主要的局限性:1)大多数方法只关注相邻区域之间的空间相关性,而忽略了全球地理环境信息;ii)这些方法无法对复杂的交通转移规律进行编码,但是这些转移过程其本质上具有时效性和多分辨率。
方案:在ST-GDN中,我们开发了一个多尺度的自我注意网络来研究多粒度的各种时间分辨率的粒度时间动态,以编码交通转移规律的时间层次。为了促进不同分辨率感知时态表示的协作,提出了一个聚合层来跨多层时态动态对底层依赖进行建模。此外,通过注意图扩散范式开发的分层图神经网络,赋予ST-GDN从局部层次的空间邻接关系到全局层次的交通模式表示的空间语义的能力

Methodology

1.Temporal Hierarchy Modeling
我们首先提出了一个多尺度的自我注意网络,将多尺度的时间信号联合映射为共同的潜在表征,以捕捉复杂的交通模式。

:然后,我们提出了一个自注意网络,从时间维度对交通变化模式进行编码

Traffic Dependency Learning with Global Context
此步骤的目标是根据不同区域的动态流量转换模式利用全局级别的依赖关系。我们开发了一种聚合机制,以捕捉区域之间的本地和全球交通依赖。具体来说,我们使用以下注意操作在G上执行消息聚合。


基于所构建的信息和所学习到的区域相关分数


Region-wise Relation Learning with Graph Diffusion Paradigm
我们进一步将区域间的空间关系纳入我们的预测框架。特别是,我们开发了一个图形结构的扩散网络,以完善学习的分辨率感知区域表示。所设计的扩散卷积运算在图的每个顶点上执行扩散过程生成新的特征表示


我们的门控聚合机制对多分辨率的流量模式表示进行基于参数矩阵的和操作


实验



结论
本文通过提出一种新的基于ST-GDN的图神经网络结构来研究流量预测问题。具体地说,首先设计了一个分辨率感知的自我注意网络对多级时间信号进行编码。在此基础上,结合局部空间背景信息和跨区域的全局交通依赖关系,增强时空格局表征。综合实验表明,本文提出的ST-GDN在4个数据集上均显著优于15个基线。我们未来的工作在于将我们开发的原型部署到一个基于云的实时交通流预测工作系统中
505

被折叠的 条评论
为什么被折叠?



