Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network

Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network

背景:现有模型存在两个主要的局限性:1)大多数方法只关注相邻区域之间的空间相关性,而忽略了全球地理环境信息;ii)这些方法无法对复杂的交通转移规律进行编码,但是这些转移过程其本质上具有时效性和多分辨率。

方案:在ST-GDN中,我们开发了一个多尺度的自我注意网络来研究多粒度的各种时间分辨率的粒度时间动态,以编码交通转移规律的时间层次。为了促进不同分辨率感知时态表示的协作,提出了一个聚合层来跨多层时态动态对底层依赖进行建模。此外,通过注意图扩散范式开发的分层图神经网络,赋予ST-GDN从局部层次的空间邻接关系到全局层次的交通模式表示的空间语义的能力

Methodology

1.Temporal Hierarchy Modeling

我们首先提出了一个多尺度的自我注意网络,将多尺度的时间信号联合映射为共同的潜在表征,以捕捉复杂的交通模式。

然后,我们提出了一个自注意网络,从时间维度对交通变化模式进行编码

Traffic Dependency Learning with Global Context

此步骤的目标是根据不同区域的动态流量转换模式利用全局级别的依赖关系。我们开发了一种聚合机制,以捕捉区域之间的本地和全球交通依赖。具体来说,我们使用以下注意操作在G上执行消息聚合。

基于所构建的信息和所学习到的区域相关分数

Region-wise Relation Learning with Graph Diffusion Paradigm

我们进一步将区域间的空间关系纳入我们的预测框架。特别是,我们开发了一个图形结构的扩散网络,以完善学习的分辨率感知区域表示。所设计的扩散卷积运算在图的每个顶点上执行扩散过程生成新的特征表示

我们的门控聚合机制对多分辨率的流量模式表示进行基于参数矩阵的和操作

实验

结论

本文通过提出一种新的基于ST-GDN的图神经网络结构来研究流量预测问题。具体地说,首先设计了一个分辨率感知的自我注意网络对多级时间信号进行编码。在此基础上,结合局部空间背景信息和跨区域的全局交通依赖关系,增强时空格局表征。综合实验表明,本文提出的ST-GDN在4个数据集上均显著优于15个基线。我们未来的工作在于将我们开发的原型部署到一个基于云的实时交通流预测工作系统中

交通流量预测是城市交通管理和规划的重要问题之一。传统的方法通常使用统计模型和时间序列分析来进行预测,但它们往往无法捕捉到交通流量数据中的复杂模式和非线性关系。因此,本文提出了一种基于多模态深度学习的混合方法来进行交通流量预测。 该方法将多模态数据(如历史交通流量数据、气象数据、节假日信息等)作为输入,利用深度神经网络来学习数据之间的复杂关系。深度神经网络可以自动提取特征,并通过多层次的非线性变换来捕捉到不同模态数据之间的依赖关系。 具体而言,该方法包括两个主要步骤:模态学习和流量预测。在模态学习阶段,使用深度神经网络对每个模态数据进行特征提取和表示学习,从而获得高维的特征表示。在流量预测阶段,利用这些特征表示来训练一个回归模型来进行交通流量的预测。可以使用不同的深度学习模型,如卷积神经网络和循环神经网络,来处理不同类型的输入数据。 该方法在实际的交通流量数据集上进行了实验,并与传统的方法进行了比较。实验结果表明,该混合方法在预测准确性和稳定性方面具有明显的优势。它能够更好地预测交通流量的变化趋势和峰值时段,并且具有较低的误差率。 综上所述,这种基于多模态深度学习的混合方法为交通流量预测提供了一种创新的解决方案。它可以更好地挖掘和利用不同模态数据之间的关联性,从而提高预测准确性,为城市交通管理和规划提供有价值的决策支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>