MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal and Channel Mixing

MTS-Mixers在ICML 2023上提出,用于多变量时间序列预测。研究在多个公共数据集上进行,包括经济、能源、交通、天气和传染病预测。对比了Transformer模型(Informer, Autoformer, pyramid, FEDformer)和非Transformer模型(SCINet, DLinear),MTS-Mixers在所有基准测试和预测长度中展示出优越性能。" 131339699,8661819,使用PowerDesigner在MySQL中显示表注释Comment的步骤,"['数据库设计', 'PowerDesigner', 'MySQL']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

MTS-Mixers: Multivariate Time Series Forecasting via Factorized Temporal and Channel Mixing(ICML 2023)

5 实验

5.1 实验装置

数据集:我们在多个公共现实基准上进行了广泛的实验,涵盖经济、能源、交通、天气和传染病预测场景。下面是数据集的详细描述。(1) ECL记录了321个客户2012 - 2014年的小时用电量。(2) ETT(电力变压器温度)由电力变压器收集的数据组成,记录了六种电力负荷特征和油温。(3) Tra

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值