【模板】树状数组 区间修改,区间求和 (模板题:洛谷P3372线段树1)

本文介绍了一种基于树状数组实现的区间加法与区间求和算法,适用于处理大规模数据集上的频繁更新与查询操作。文章通过一个具体的编程实例详细解释了如何利用差分和树状数组高效解决此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

如题,已知一个数列,你需要进行下面两种操作:

1.将某区间每一个数加上x

2.求出某区间每一个数的和

输入输出格式

输入格式:

第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。

第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。

接下来M行每行包含3或4个整数,表示一个操作,具体如下:

操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k

操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和

输出格式:

输出包含若干行整数,即为所有操作2的结果。

输入输出样例

输入样例#1:
5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
输出样例#1:
11
8
20








说明

时空限制:1000ms,128M

数据规模:

对于30%的数据:N<=8,M<=10

对于70%的数据:N<=1000,M<=10000

对于100%的数据:N<=100000,M<=100000

(数据已经过加强^_^,保证在int64/long long数据范围内)

样例说明:




#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;

ll n,m;
ll a[500000],c[500000],c2[500000];


ll lowbit(ll x){
	return x&(-x);
}

ll sigma(ll *r,ll x){    //树状数组的优势,log(n)求前x项的和 
	ll s=0;
	for (ll i=x;i>0;i-=lowbit(i)) s+=r[i];
	return s;
}

void add(ll *r,ll x,ll v){  //向上打标记 
	for (ll i=x;i<=n;i+=lowbit(i)) r[i]+=v;
}

ll ask(ll x,ll y){          //询问区间和 
	ll s1=y*sigma(c,y)-sigma(c2,y);
	ll s2=(x-1)*sigma(c,x-1)-sigma(c2,x-1);
	return s1-s2;
}

int main(){
	scanf("%lld%lld",&n,&m);
	ll flag,x,y,v;
	for (ll i=1;i<=n;++i){
		scanf("%lld",a+i);
		add(c,i,a[i]-a[i-1]);
		add(c2,i,(i-1)*(a[i]-a[i-1]));
	}
		
	for (ll i=1;i<=m;++i){
		scanf("%lld",&flag);
		if (flag==1){
			scanf("%lld%lld%lld",&x,&y,&v);
			add(c,x,v);        //差分思想 
			add(c,y+1,-v);     //在维护两个数组时 
			add(c2,x,(x-1)*v); //在点上打上标记 
			add(c2,y+1,-v*y);
		}else
		if (flag==2){
			scanf("%lld%lld",&x,&y);
			printf("%lld\n",ask(x,y));
		}
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值