题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某区间每一个数加上x
2.求出某区间每一个数的和
输入输出格式
输入格式:第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1 x y k 含义:将区间[x,y]内每个数加上k
操作2: 格式:2 x y 含义:输出区间[x,y]内每个数的和
输出格式:
输出包含若干行整数,即为所有操作2的结果。
输入输出样例
输入样例#1:
5 5 1 5 4 2 3 2 2 4 1 2 3 2 2 3 4 1 1 5 1 2 1 4
输出样例#1:
11 8 20
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
(数据已经过加强^_^,保证在int64/long long数据范围内)
样例说明:
#include <iostream>
#include <cstdio>
#define ll long long
using namespace std;
ll n,m;
ll a[500000],c[500000],c2[500000];
ll lowbit(ll x){
return x&(-x);
}
ll sigma(ll *r,ll x){ //树状数组的优势,log(n)求前x项的和
ll s=0;
for (ll i=x;i>0;i-=lowbit(i)) s+=r[i];
return s;
}
void add(ll *r,ll x,ll v){ //向上打标记
for (ll i=x;i<=n;i+=lowbit(i)) r[i]+=v;
}
ll ask(ll x,ll y){ //询问区间和
ll s1=y*sigma(c,y)-sigma(c2,y);
ll s2=(x-1)*sigma(c,x-1)-sigma(c2,x-1);
return s1-s2;
}
int main(){
scanf("%lld%lld",&n,&m);
ll flag,x,y,v;
for (ll i=1;i<=n;++i){
scanf("%lld",a+i);
add(c,i,a[i]-a[i-1]);
add(c2,i,(i-1)*(a[i]-a[i-1]));
}
for (ll i=1;i<=m;++i){
scanf("%lld",&flag);
if (flag==1){
scanf("%lld%lld%lld",&x,&y,&v);
add(c,x,v); //差分思想
add(c,y+1,-v); //在维护两个数组时
add(c2,x,(x-1)*v); //在点上打上标记
add(c2,y+1,-v*y);
}else
if (flag==2){
scanf("%lld%lld",&x,&y);
printf("%lld\n",ask(x,y));
}
}
return 0;
}