PyTorch中定义模型时,有时候会遇到self.register_buffer('name', Tensor)的操作,该方法的作用是定义一组参数,该组参数的特别之处在于:模型训练时不会更新(即调用 optimizer.step() 后该组参数不会变化,只可人为地改变它们的值),但是保存模型时,该组参数又作为模型参数不可或缺的一部分被保存。
但是在使用时发现,buffer里的值发生变化了。代码如下:
grid_x = self.Theta
grid_x[:,:,:,0] = grid_x[:,:,:,0] / (self.retinal_W/2) - 1
解决办法为使用clone
grid_x = self.Theta.clone()
grid_x[:,:,:,0] = grid_x[:,:,:,0] / (self.retinal_W/2) - 1

在PyTorch中,register_buffer用于定义不会在训练时更新的参数,但在保存模型时会包含。然而,文章提到当尝试修改buffer中的值时,发现其变化了。解决方案是使用clone来创建一个独立的副本进行操作,以保持buffer的原始状态不变。

被折叠的 条评论
为什么被折叠?



