如何向pytorch的__getitem__()中传递自定义参数

网上找了很久,没有能解决的。这里给出亲测可用的方法:

# 定义一个自定义的采样器对象
class CustomBatchSampler(BatchSampler):
    def __iter__(self):
        batch = []
        para = 0 # 参数 
        for idx in self.sampler:
            batch.append((idx, para))
            if len(batch) == self.batch_size:
                yield batch
                batch = []
        if len(batch) > 0:
            yield batch

# 定义Dataloader的时候使用这个采样器
loader = DataLoader(dataset, batch_sampler=batch_sampler, **loader_args)



# dataset加上获取额外参数的代码
 def __getitem__(self, index):
   index, para= index[0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值