以下是本人在了解与掌握弗雷歇距离时,通过浏览网站以及参考文献得出的个人理解,仅供参考,属于搬运内容,会给出响应网址。
弗雷歇距离:一种解决空间路径相似度的方法(好像研究遥感的用的比较多,这点也是在看相关论文或者某乎时发现的)。此方法着重考虑了曲线空间距离上的相似度, 对于有时序的曲线相似度判断有着较高的效率。对算法最直观的理解是狗主人用绳子牵着狗, 主人走蓝线 形成的路径, 狗走红线形成的路径, 主人和狗走完各自全部的路径所需要的最短绳长, 这个绳长便是弗雷歇距离。

(理解时参考网站)https://zhuanlan.zhihu.com/p/20159963
我在看这部分时出现两个方面的理解:1、这个最短距离是能完成整个路程时,所需的绳子的最短距离嘛(这一点类似木桶效应,这不过这地方如果这么理解的话应该是最长距离,道理相通)2、就是最短距离了,也就是在各自的路径中两者之间的最距离
有了上面两个疑问,我们再来看一下一篇EI论文(考虑无形磨损的拖拉机残值系数预测模型)
想看的可以自行知网(不会有人不知道吧)
文中在给出了求解的方法,简单理解就是现在有曲线A、B、C;其中A是实际曲线,B、C是预测曲线,现在我们要看一下B、C那条曲线的预测程度高一点,也就是说B、C哪条曲线与A的相似程度高一点。A的曲线坐标可以用(xm,ym)来表示,B、C的曲线坐标分别用(xv,yv),(xn,yn),分别求出A、B和A、C之间的对应点的距离,列成矩阵M、N。分别求出矩阵M、N 中的最大值D、最小值d,f=d,r=(D+d)/100,规定M、N中小于各自最小值的数值为1,大于最小值的数值为0,得到两个二值矩阵,将两个矩阵中为1的值作为各个二值矩阵的路径,若没有则f=f+r重复直至找到此时f为弗雷歇距离。
到这就可以解释弗雷歇距离,之前我刚刚看完时提出了自己的两个理解,那只是第一印象。到我看完这个例子,又重新把弗雷歇距离的数学定义看了一遍,简单理解的话就是:两条曲线两条曲线对应点距离的最大值(前提找到最小化函数:非降、值域(0,1))。
5463

被折叠的 条评论
为什么被折叠?



