s = pd.Series([1,2,“aa”,“b”])
print(s)
out:
0 1
1 2
2 aa
3 b
dtype: object
s1 = pd.Series([1,2,3,4])
print(s1)
out:
0 1
1 2
2 3
3 4
dtype: int64
很明显我们看到返回的dtype类型不一样.这还是其次,我们在通过Pandas建series时,列表中的2 和"aa"的类型也不一样,一个是整形一个是字符串类型,这一点我们可以通过print(type(s[0]))和print(type(s[2]))验证,难道series可以存储不同的类型,后来我试着搜索了pandas中的dtype,结合自己浏览到的内容做一下总结:
dtype数据类型对象描述了对应于数组的固定内存块的解释,也就是说dtype反应的为程序执行是对应内存的类型,这样就可以解释上面这种情况。
返回的object,对应内容为series整体在内存中开出的空间;而int64对应的内容为series内部类型对应的内存内容。

被折叠的 条评论
为什么被折叠?



