yolo
文章平均质量分 93
superme_zjl
这个作者很懒,什么都没留下…
展开
-
YOLO V5解读
YOLO V5 1.对于V4的改进 1.YOLOv5在YOLOv4算法的基础上做了进一步的改进,检测性能得到进一步的提升 1.自适应锚框计算。 2.仍然采用Mosaic数据增强。 1.1在Yolo算法中,针对不同的数据集,都会有初始设定长宽的锚框。在网络训练中,网络在初始锚框的基础上输出预测框,进而和真实框groundtruth进行比对,计算两者差距,再反向更新,迭代网络参数。 Yolov5中将此功能嵌入到代码中,每次训练时,自适应的计算不同训练集中的最佳锚框值。 当然,如果觉得计算的锚框效果不是很好,也原创 2021-12-09 17:09:23 · 28409 阅读 · 1 评论 -
YOLO V4详解
YOLO V4详细解读 对于V3的改进之处 1、主干特征提取网络:DarkNet53 => CSPDarkNet53 2、特征金字塔:SPP,PAN 3、分类回归层:YOLOv3(未改变) 4、训练用到的小技巧:Mosaic数据增强、Label Smoothing平滑、CIOU、学习率余弦退火衰减 5、激活函数:使用Mish激活函数 1、darknet的改进之处 1.1、在激活函数上采用Mish激活函数 采用了新的激活函数:其一是将DarknetConv2D的激活函数由LeakyReLU修改成了Mi原创 2021-11-23 16:14:27 · 4038 阅读 · 3 评论
分享