【数据分析:超实用的pandas语法技巧(一)】

前言:
💞💞大家好,我是书生♡,本篇文章和大家一起分享和探索超实用的pandas语法技巧,本篇文章主要讲述了:如何快速处理一些pandas中DataFrame对象的问题技巧等等。欢迎大家一起探索讨论!!!
💞💞代码是你的画笔,创新是你的画布,用它们绘出属于你的精彩世界,不断挑战,无限可能!

个人主页⭐: 书生♡
gitee主页🙋‍♂:闲客
专栏主页💞:大数据开发
博客领域💥:大数据开发,java编程,前端,算法,Python
写作风格💞:超前知识点,干货,思路讲解,通俗易懂
支持博主💖:关注⭐,点赞、收藏⭐、留言💬

1. 删除DF对象中的一列/多列数据

这个语法,其实在我们日常工作中并不是很常用,但是是我们必须会用的一个语法,因为我们在工作中是不会随便删除数据。我们会这个是因为我们在自己去分析某些东西的时候会用到。

1.1 drop 方法

  drop 方法是 Pandas 提供的一个非常直观的方法来删除列。你可以指定要删除的列名,并且设置 axis=1 参数表示你想要删除的是列而不是行。

  • 删除一列
import pandas as pd

# 创建一个示例 DataFrame
data = {
   
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 删除列 'B'
df = df.drop('B', axis=1)
# 查看数据
df
  • 删除多列
import pandas as pd

# 创建一个示例 DataFrame
data = {
   
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 删除多列 'B' 和 'C'
df = df.drop(['B', 'C'], axis=1)
# 查看数据
df

1.2 del 关键字

  可以直接使用 Python 的 del 关键字来删除列。这是一种更直接的方式,但它会直接修改原始的 DataFrame 而不是返回一个新的 DataFrame。

import pandas as pd
# 创建一个示例 DataFrame
data = {
   
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 删除列 'B'
del df['B']
# 查看数据
df

1. 3 pop 方法

  pop 方法不仅可以删除列,还可以返回被删除的那一列的数据。这在你想要同时获取和移除某一列时很有用。

import pandas as pd
# 创建一个示例 DataFrame
data = {
   
    'A': [1, 2, 3],
    'B': [4, 5, 6],
    'C': [7, 8, 9]
}
df = pd.DataFrame(data)
# 删除并获取列 'B'
column_b = df.pop('B')

print("Deleted column B:\n", column_b)
print("\nRemaining DataFrame:\n", df)

1.4 注意事项

  • 如果你不希望改变原始的 DataFrame,而是创建一个没有指定列的新 DataFrame,请确保将 drop方法的结果赋值给一个新的变量或覆盖原来的变量。
  • 在使用 drop 方法时,可以通过设置参数 inplace=True 来直接修改原始DataFrame,而不需要重新赋值。
# 直接在原始 DataFrame 上删除列 'B'
df.drop('B', axis=1, inplace=True)

2. 数据筛选

  要在 Pandas 中筛选出数据使我们在工作常常可以使用到的,例如:我们要筛选出订单是抖音和快手两个平卖出的,那我们就要筛选平台是抖音和快手。你可以使用多种方法。以下是几种常见的方法:

2.1 使用 .loc[] 和布尔索引

import 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值