OReillyData

O'Reilly Media BigData Channel

排序:
默认
按更新时间
按访问量

来自首次Ray聚会的记录

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;如...

2018-09-25 10:23:18

阅读数:1

评论数:0

企业里下一代人工智能助手

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;读...

2018-09-17 10:04:36

阅读数:17

评论数:0

如何思索人工智能、机器学习技术以及它们在自动化过程中所扮演角色

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;读...

2018-09-10 10:34:53

阅读数:39

评论数:0

9月|O'Reilly好书推荐[每月送书]

O'Reilly读者俱乐部联合图灵教育每月送书如约而至!9月档新书推...

2018-09-05 13:47:44

阅读数:38

评论数:0

走向机器学习的喷气时代

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;读...

2018-09-03 09:16:11

阅读数:71

评论数:0

从将机器学习模型转化成真正产品和服务中学到的经验教训

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;读...

2018-08-27 11:21:52

阅读数:7608

评论数:0

为明天的人工智能应用构建工具

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;读...

2018-08-13 10:04:25

阅读数:144

评论数:0

用Skater来解读预测性模型:解密模型的隐秘

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;读...

2018-07-30 16:47:35

阅读数:134

评论数:0

用Apache MXNet构建一个循环神经网络

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面。在...

2018-07-23 09:05:02

阅读数:361

评论数:0

围炉座谈——李开复与Tim O'Reilly对话

2018年9月AI大会旧金山站李开复先生将对话Tim O'Reill...

2018-07-16 14:26:59

阅读数:81

评论数:0

AI Conference Beijing 2018(人工智能北京大会)亮点系列之四

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;人...

2018-07-09 09:22:58

阅读数:90

评论数:0

比较两个生产级NLP库:准确性、性能和可扩展性

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;可...

2018-07-02 10:20:56

阅读数:97

评论数:0

比较两个生产级NLP库:运行Spark-NLP和spaCy的管道

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;可...

2018-06-25 10:48:14

阅读数:89

评论数:0

比较两个生产级NLP库:训练Spark-NLP和spaCy的管道

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;可...

2018-06-19 10:49:14

阅读数:406

评论数:0

AI Conference Beijing 2018(人工智能北京大会)亮点系列之三

编者注:文中超链接如果不能访问可以点击“阅读原文”访问本文原页面;人...

2018-06-11 13:56:45

阅读数:655

评论数:1

企业里的深度学习

编者注:可参看2018年2月27日的webcast “使用人工智能来...

2018-04-23 00:00:00

阅读数:115

评论数:0

吹响“人工智能应用”的集结号——AI Conference 2018北京站大会圆满落幕

2018年4月10日至4月13日,由O'Reilly和Intel共同...

2018-04-18 12:44:39

阅读数:92

评论数:0

使用Apache MXNet进行异常检测

近年来,『异常检测』这一术语(有时也称作离群点检测)越来越多地出现在...

2018-04-18 12:44:25

阅读数:73

评论数:0

吹响“人工智能应用”的集结号——AI Conference 2018北京站大会圆满落幕

2018年4月10日至4月13日,由O'Reilly和Intel共同举办的AI Conference 2018北京站大会在北京国际饭店会议中心隆重举行。大会的主题是“探索在业务中应用人工智能的机会”,来自Google、Intel、Uber、Amazon、百度、微软、阿里巴巴、蚂蚁金服、SAS、IB...

2018-04-16 00:00:00

阅读数:54

评论数:0

用于语言任务的卷积神经网络

虽然卷积神经网络通常适用于视觉问题,但它们对于某些语言任务可能非常有效。在处理序列数据(如自然语言处理任务)这类问题时,递归神经网络(RNN)通常是首选方法。 尽管RNN的时间序列性质与文本数据相关的问题是天然匹配的,但是在处理视觉任务中曾获得巨大成功的卷积神经网络(CNN)在这些问题上也同样有效...

2018-04-09 00:00:00

阅读数:138

评论数:2

提示
确定要删除当前文章?
取消 删除
关闭
关闭