北京大学2019考研一道题 二项式定理和定积分的应用

北大的这一道求和等式习题吸引我的注意。乍一看似乎很对称,甚至觉得理所应当。但是我们不能满足表明看起来的正确。
那么实际上证明应该如何处理呢:
在这里插入图片描述
在这里插入图片描述

如果觉得上面解答构造不易理解。我们可以尝试一步一步去解析:
证明:
∑ k = 0 n ( − 1 ) k C n k 1 k + m + 1 = ∑ k = 0 n ( − 1 ) k C n k ∫ 0 1 x k + m d x = ∫ 0 1 x m ∑ k = 0 n C n k ( − 1 ) k x k d x = ∫ 0 1 x m ( 1 − x ) n d x (令 t =1- x ) = ∫ 1 0 ( 1 − t ) m ( t ) n d t ( 将 t 改写成 x ,积分与积分变量无关 ) = − ∫ 1 0 ( 1 − x ) m x n d t = ∫ 0 1 ( 1 − x ) m x n d t = ∫ 0 1 x n ∑ k = 0 m C m k ( − 1 ) k x k d x = ∑ k = 0 m ( − 1 ) k C m k ∫ 0 1 x n + k d x = ∑ k = 0 m ( − 1 ) k C m k 1 n + k + 1 \begin{aligned} \sum_{k=0}^n(-1)^kC^k_n\frac{1}{k+m+1}=&\sum_{k=0}^n(-1)^kC^k_n\int_0^1x^{k+m}dx\\ =&\int_0^1x^m\sum^n_{k=0}C^k_n(-1)^kx^k dx\\ =&\int_0^1x^m(1-x)^ndx\text{(令$t$=1-$x$)}\\ =&\int^0_1(1-t)^m(t)^ndt(\text{将$t$改写成$x$,积分与积分变量无关})\\ =-&\int^0_1(1-x)^mx^ndt\\ =&\int^1_0(1-x)^mx^ndt\\ =&\int_0^1x^n\sum_{k=0}^mC^k_m(-1)^kx^kdx\\ =&\sum_{k=0}^m(-1)^kC^k_m\int_0^1x^{n+k}dx\\ =&\sum_{k=0}^m(-1)^kC^k_m\frac{1}{n+k+1} \end{aligned} k=0n(1)kCnkk+m+11=========k=0n(1)kCnk01xk+mdx01xmk=0nCnk(1)kxkdx01xm(1x)ndx(t=1-x)10(1t)m(t)ndt(t改写成x,积分与积分变量无关)10(1x)mxndt01(1x)mxndt01xnk=0mCmk(1)kxkdxk=0m(1)kCmk01xn+kdxk=0m(1)kCmkn+k+11

点击查看参考原文

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:书香水墨 设计师:CSDN官方博客 返回首页
评论

打赏作者

zlc_abc

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值