北大的这一道求和等式习题吸引我的注意。乍一看似乎很对称,甚至觉得理所应当。但是我们不能满足表明看起来的正确。
那么实际上证明应该如何处理呢:
如果觉得上面解答构造不易理解。我们可以尝试一步一步去解析:
证明:
∑
k
=
0
n
(
−
1
)
k
C
n
k
1
k
+
m
+
1
=
∑
k
=
0
n
(
−
1
)
k
C
n
k
∫
0
1
x
k
+
m
d
x
=
∫
0
1
x
m
∑
k
=
0
n
C
n
k
(
−
1
)
k
x
k
d
x
=
∫
0
1
x
m
(
1
−
x
)
n
d
x
(令
t
=1-
x
)
=
∫
1
0
(
1
−
t
)
m
(
t
)
n
d
t
(
将
t
改写成
x
,积分与积分变量无关
)
=
−
∫
1
0
(
1
−
x
)
m
x
n
d
t
=
∫
0
1
(
1
−
x
)
m
x
n
d
t
=
∫
0
1
x
n
∑
k
=
0
m
C
m
k
(
−
1
)
k
x
k
d
x
=
∑
k
=
0
m
(
−
1
)
k
C
m
k
∫
0
1
x
n
+
k
d
x
=
∑
k
=
0
m
(
−
1
)
k
C
m
k
1
n
+
k
+
1
\begin{aligned} \sum_{k=0}^n(-1)^kC^k_n\frac{1}{k+m+1}=&\sum_{k=0}^n(-1)^kC^k_n\int_0^1x^{k+m}dx\\ =&\int_0^1x^m\sum^n_{k=0}C^k_n(-1)^kx^k dx\\ =&\int_0^1x^m(1-x)^ndx\text{(令$t$=1-$x$)}\\ =&\int^0_1(1-t)^m(t)^ndt(\text{将$t$改写成$x$,积分与积分变量无关})\\ =-&\int^0_1(1-x)^mx^ndt\\ =&\int^1_0(1-x)^mx^ndt\\ =&\int_0^1x^n\sum_{k=0}^mC^k_m(-1)^kx^kdx\\ =&\sum_{k=0}^m(-1)^kC^k_m\int_0^1x^{n+k}dx\\ =&\sum_{k=0}^m(-1)^kC^k_m\frac{1}{n+k+1} \end{aligned}
k=0∑n(−1)kCnkk+m+11=====−====k=0∑n(−1)kCnk∫01xk+mdx∫01xmk=0∑nCnk(−1)kxkdx∫01xm(1−x)ndx(令t=1-x)∫10(1−t)m(t)ndt(将t改写成x,积分与积分变量无关)∫10(1−x)mxndt∫01(1−x)mxndt∫01xnk=0∑mCmk(−1)kxkdxk=0∑m(−1)kCmk∫01xn+kdxk=0∑m(−1)kCmkn+k+11