干货|遗传+禁忌混合算法(HA)算法求解柔性作业车间调度问题(FJSP)附java代码-第三部分

往期回顾:

干货|遗传+禁忌混合算法(HA)算法求解柔性车间调度问题(FJSP)附java代码-第一部分

干货|遗传+禁忌混合算法(HA)算法求解柔性车间调度问题(FJSP)附java代码-第二部分

前两篇文章中,我们介绍了FJSP问题,并梳理了一遍HA算法。这一篇文章对小编实现的(很乱很烂的)代码进行简单解读。

代码框架

在这里插入图片描述
代码分为5个包,第一部分Data为用到的各类结构,第二部分GA为GA部分+第一个TS,第三部分主函数,第四、五部分是两个TS。

算例放置在input文件夹中,这里准备了Mk系列算例,Kacem系列算例和论文中的简单算例test.txt。

Main

算例输入:
在这里插入图片描述
Main中还有一个输出为CSV的函数,需要一个jar包,已经放在下载链接里了,不需要的同学也可以删除。
在这里插入图片描述

Data

一堆乱七八糟的结构。这里简单讲一下Solution类和Graph类。

Solution类中包含多个print函数,比较重要的包括绘制甘特图以及check解是否合法。

输出甘特图函数
operationMatrix是解的主题,存放某个工件的某道工序的开始、结束时间,所在加工机器。
在这里插入图片描述
Graph类表示析取图。nodeList是每台机器上的node。Graph中还包含了获取critical path的DFS和update starting time & end time的Bellman算法。
在这里插入图片描述

GA

MyHybridAlgorithm类是GA的主函数。小编在实现的时候进行了多种测试,比如迭代的noImprove次数达到limit时进行扰动:
在这里插入图片描述
选择哪种Tabu:
在这里插入图片描述
读者在阅读的时候请自己注意。

算法相关的参数我都做了初始化,请自行查找修改:
在这里插入图片描述
交叉、变异等操作包含在ChromosomeOperation类中,计算适应度的函数在CaculateFitness类中,TabuSearch1类是基于编码的tabu,这里都不多展示了。

NeighbourSearch

这个包包含的是基于析取图的tabu。NeighbourAlgorithms类转化解:
在这里插入图片描述
TabuSearch2类为tabu主函数。NeighbourGraph类存放析取图邻域搜索产生的解。

DeleteNeighbourGraph类为析取图中暂时去掉某个点后的情况,PM、PJ、SM、SJ代表precede、succeed、machine、job四条边对应的点,deleteNode为删去的点。
在这里插入图片描述
其中还有findLandR位置的二分查找函数,insert时的估值函数:
在这里插入图片描述
在这里插入图片描述

NeighbourSearch2

这个包为第三个基于甘特图的tabu。

RTS类为tabu的主函数。解通过:

ArrayList<ArrayList<Operation>>

的形式表示。

replan函数中包含了在甘特图上进行swap操作后更新解的方法,有详细注释:
在这里插入图片描述

总结

到这里已经大致梳理了一遍代码,但其中还有很多细节没有讲到,包括很多东西实现的不好,欢迎随时和我交流!

由于是自己研究时写的代码,其中很多东西会比较乱,但是代码中做了很多注解,仔细阅读应该能看得懂的!

下载的包里还有一些这方面的相关文献资料!喜欢的不妨支持一下作者!(star一下就挺好哈)

参考

[1]Li, Xinyu , and L. Gao . “An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem.” International Journal of Production Economics 174.Apr.(2016):93-110.

[2]Zhang, Chao Yong , P. G. Li , and Y. R. Zailin Guan . “A tabu search algorithm with a new neighborhood structure for the job shop scheduling problem.” Computers & Operations Research 34.11(2007):3229-3242.

[3]Mastrolilli, Monaldo , and L. M. Gambardella . “Effective Neighbourhood Functions for the Flexible Job Shop Problem.” Journal of Scheduling 3.1(2015):3-20.

[4]Zhang, Guohui , L. Gao , and Y. Shi . “An effective genetic algorithm for the flexible job-shop scheduling problem.” Expert Systems with Applications 38.4(2011):3563-3573.

代码下载

扫描下方二维码,登录公众号【程序猿声】,输入【FJSPHA】不带【】即可免费获取相关代码!

也可以访问作者github下载对应代码:点击这里!

在这里插入图片描述

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值