和大家分享一份最近的工作!
统一自动驾驶纵向轨迹数据集(Ultra-AV)
摘要
自动驾驶车辆在交通运输领域展现出巨大潜力,而理解其纵向驾驶行为是实现安全高效自动驾驶的关键。现有的开源AV轨迹数据集在数据精炼、可靠性和完整性方面存在不足,从而限制了有效的性能度量分析和模型开发。
本研究针对这些挑战,构建了一个统一的自动驾驶汽车纵向轨迹数据集(Ultra-AV),用于分析自动驾驶汽车的微观纵向驾驶行为。该数据集整合了来自14 个的数据,涵盖多种自动驾驶汽车类型、测试场景和实验环境。我们提出了一种数据处理框架,以获得高质量的纵向轨迹数据和跟驰轨迹数据。最后,本研究通过对安全性、通行效率、稳定性和可持续性等多个性能维度的评估,以及对跟驰模型变量之间关系的分析,验证了数据的有效性。我们的工作不仅为研究人员提供了标准化的数据和指标,用于分析自动驾驶汽车的纵向行为,还为数据采集和模型开发提供了指导方法。
介绍
理解自动驾驶汽车的纵向驾驶行为对于确保其安全性和优化交通流至关重要。然而,现有的开源自动驾驶汽车轨迹数据集缺乏精细的数据清理和标准化,导致:
- 数据质量不均,影响模型开发和性能评估。
- 缺乏完整性和可靠性,难以进行跨数据集研究。
- 分析效率低,影响AV安全测试和仿真研究。
本研究提出了一种统一的自动驾驶汽车纵向轨迹数据集(Ultra-AV),有以下特点:
- 大规模数据集: 数据总量 2.6GB,涵盖 14 个不同的自动驾驶数据源,涉及 30 多种测试和实验场景,包含 超过 1000 万个数据点,相当于 280 小时以上的行驶数据。
- 标准化数据格式: 统一不同数据源的数据格式,使其适用于跨数据集研究。
- 数据处理框架: 提供一种高效的数据处理方法,提高数据的可用性,支持自动驾驶仿真测试和行为建模。
方法
如图所示,我们的统一数据集涵盖了14个不同来源的数据集。这些数据集收集自美国和欧洲的多个城市,确保了所选城市的多样