E. Arithmetic Operations 根号分治

题意:1e5长的数组,ai<=1e5,问要将其变成等差数列的最小次数;

分析:

简单分析可得 —— 显然这个答案是固定的,就是原数列本来就能成为等差数列的最大个数。 但是最直接的想法是n^2 的,一维枚举起始位置,一维扫过去,发现暂时没法优化,所以转变思路,看能否换个枚举方式,转而枚举 d(差值),同时发现如果差值大的话,完全不需要枚举完整个数列。

马上想到根号分治,对值域分治,对于大于根号 k 的差值,只需要枚举根号的长度即可,这里的复杂度是n\sqrt n ,但是对于前根号 k 的值,就不知道如何处理了;(我当时还想着是枚举位置,再枚举位置),但实际上,完全可以利用等差公式根据位置推到a_0,也就是对于每个 d ,看a_0 的众数是多少,由于再加个 log 会 T,所以开个桶解决【对于小于根号的处理方式跟这题Problem - C - Codeforces  很像】

Problem - E - Codeforces 

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5;
const int mo = 998244353;
#define pb push_back
#define pii pair<int,int>
#define ft first
#define sd second
#define ffor(i,a,b,c) for(int i=(a);i<(b);i+=(c))
#define For(i,a,b,c) for(int i=(a);i<=(b);i+=(c))
#define rfor(i,a,b,c) for(int i=(a);i>(b);i-=(c))
#define Rfor(i,a,b,c) for(int i=(a);i>=(b);i-=(c))
#define all(x) (x).begin(), (x).end()
#define debug1(x) cerr<<"! "<<x<<endl;
#define debug2(x,y) cerr<<"#  "<<x<<" "<<y<<endl;
int tax[N*1000];
class Partition
{
public:
	Partition(int _n) : n(_n) {
		v.resize(n + 1);
		for(int i = 1; i <= n; i++) {
			cin >> v[i];
		}
		blo = 300; //块可以开的比根号稍微小一点,不然桶开不下,因为1GB最大约1e9个int
	}

	int cal() {
		int mx = 0;
		for (int d = 0; d <= blo; d++) {
			for (int i = 1; i <= n; i++) {
				mx = max(mx, ++tax[v[i] - i*d + del]);
			}
			for (int i = 1; i <= n; i++) {
				tax[v[i] - i*d + del] = 0;
			}
		}
		//递增的等差数列,所以只要固定位置往右枚举就行,不需要再考虑左
		for (int i = 1; i <= n; i++) {
			for(int j = i + 1; j <= n && (j - i) * blo <= N; j++) {
				if((v[i] - v[j]) % (i - j) == 0) mx = max(mx, ++tax[(v[i] - v[j]) / (i - j) + N] + 1);
			}
			for(int j = i + 1; j <= n && (j - i) * blo <= N; j++) {
				if((v[i] - v[j]) % (i - j) == 0) tax[(v[i] - v[j]) / (i - j) + N] = 0;
			}
		}

		return n - mx;
	}

	int slv() {
		int ans = cal();
		reverse(v.begin() + 1, v.end());
		ans = min(ans, cal());
		return ans;
	}

private:
	int n, blo;
	vector<int> v;
	const int del = 30000000;
};
void slv() {
	int n; cin >> n;
	Partition Pt(n);
	cout << Pt.slv() << '\n';
}
int main() {
	ios::sync_with_stdio(false); cin.tie(0);
	slv();
}

PS:代码有借鉴别人,当时没想到负的也可以,一直没调出来。

感觉分块目前见到的有对序列分块,对值域分块,对询问分块。 当然每个都可以有他的衍生,而根号分块可能其实就是从属于值域分块

### 回答1: 这是Java中的一个异常,意思是需要进行四舍五入。通常是因为进行了除法运算,但结果不能被精确表示为一个整数或小数。解决方法是使用BigDecimal类进行精确计算,或者使用Math.round()方法进行四舍五入。 ### 回答2: java.lang.ArithmeticException: rounding necessary是Java中的一个异常。它表示在进行数值运算时,需要进行舍入操作。在Java中,当进行除法或四舍五入等运算时,如果结果不是一个整数,则需要进行舍入以获得最接近的整数或指定的小数位数。 这个异常通常发生在以下情况下: 1. 当进行除法运算时,如果除数不能整除被除数,则需要进行舍入才能得到结果。如果无法进行舍入操作,就会抛出该异常。 2. 当通过四舍五入方式将一个小数转换为整数或指定小数位数时,如果需要进行舍入操作才能得到结果,则会抛出该异常。 为了解决这个异常,我们可以采取以下措施: 1. 检查除法运算中的被除数和除数,确保能够整除,避免出现舍入错误。如果无法整除,则需要重新设计算法或找到其他解决方案。 2. 在进行四舍五入运算时,可以使用Java中的Math类提供的方法,如Math.round()来进行舍入操作。此外,还可以考虑使用BigDecimal类来处理精确的小数运算,它提供了很多可以进行舍入操作的方法。 总之,当我们在Java中遇到java.lang.ArithmeticException: rounding necessary异常时,表示在进行数值运算时需要进行舍入操作。要解决这个异常,我们需要检查除法运算中的被除数和除数,以及使用适当的方法进行舍入操作,保证结果的准确性。 ### 回答3: Java.lang.ArithmeticException: rounding necessary 是一个在Java中的异常类型。它表示在进行数值运算时需要进行四舍五入操作。 在进行数值运算时,可能会出现无法准确表示的结果,特别是涉及到浮点数和小数点的运算。由于计算机的内部表示方式有限,无法完美地表示所有的小数和浮点数。这就导致了某些运算结果的尾数部分可能无法精确表示,需要进行四舍五入操作。 当进行一个数值运算时,如果该运算需要进行四舍五入操作以确保结果的准确性,但是没有指示具体的四舍五入策略时,就会抛出 java.lang.ArithmeticException: rounding necessary 异常。 要解决这个异常,可以使用合适的四舍五入策略来确保数值运算的准确性。Java中提供了 BigDecimal 类来处理高精度的数值计算,它可以指定要使用的四舍五入策略。在进行数值运算时,可以使用 BigDecimal 类来处理数值,并指定需要使用的四舍五入策略,从而避免 java.lang.ArithmeticException: rounding necessary 异常的发生。 总之,解决 java.lang.ArithmeticException: rounding necessary 异常的方法是使用 BigDecimal 类来处理数值运算,并指定合适的四舍五入策略。这样可以确保数值运算的准确性,避免出现无法精确表示的结果导致的异常。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值