自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(89)
  • 收藏
  • 关注

原创 text to image(九):《Photographic Text-to-Image Synthesis with a Hierarchically-nested Adversarial Ne 》

     继续介绍文本生成图像的工作,本篇博客要给出的是cvpr2018的《Photographic Text-to-Image Synthesis with a Hierarchically-nested Adversarial Net》 。        论文地址:https://arxiv.org/pdf/1802.09178.pdf        源码地址:https://gith...

2018-08-27 11:34:05 2398 2

转载 word2vec

自从 Google 的 Tomas Mikolov 在《Efficient Estimation of Word Representation in Vector Space》提出 Word2Vec,就成为了深度学习在自然语言处理中的基础部件。Word2Vec 的基本思想是把自然语言中的每一个词,表示成一个统一意义统一维度的短向量。至于向量中的每个维度具体是什么意义,没人知道,也无需知道,也许对应...

2018-08-24 18:02:45 242

原创 text to image(七):《TAC-GAN 》

      继续介绍文本生成图像的工作,本篇博客要给出的是2017年3月19号发表于arXiv的《TAC-GAN – Text Conditioned Auxiliary Classifier Generative Adversarial Network》 。      论文地址:https://arxiv.org/abs/1703.06412v2      源码地址:https://gi...

2018-08-06 21:31:48 3370

原创 text to image(一):《GENERATING IMAGES FROM CAPTIONS WITH ATTENTION》

      介绍文本生成图像的工作.本文要介绍的是发表于 ICLR 2016的论文《GENERATING IMAGES FROM CAPTIONS WITH ATTENTION》 .时间比较早,不同于常见的使用GAN来生成图像,这篇文章使用的方法本质上是一个VAE(变分自动编码器).文章没看太懂...数学推导很高深,但是代码结构很清楚.      论文地址:https://arxiv.org/...

2018-08-06 13:24:02 2607

原创 text to image(二):《Generative Adversarial Text to Image Synthesis》

       继续介绍文本生成图像的工作,本文给出的是发表于ICML 2016的文章《Generative Adversarial Text to Image Synthesis》。这篇文章的源码是用torch写的,不是很熟悉,所以就不配合源码解析了.这篇博客主要是参考https://zhuanlan.zhihu.com/p/32326260给出的部分文章翻译,加一些自己的理解.       ...

2018-08-04 22:28:41 5494

原创 text to image(三):《Learning What and Where to Draw》

       继续介绍文本生成图像的工作,本文给出的是发表于NIPS 2016的文章《Learning What and Where to Draw》。这篇文章的源码是用torch写的,不是很熟悉,所以就不配合源码解析了.这篇博客主要是参考https://zhuanlan.zhihu.com/p/34379810给出的部分文章翻译,加一些自己的理解.        论文地址:https://a...

2018-08-04 21:07:39 2208 1

原创 text to image(六):《AttnGAN》

继续介绍文本生成图像的工作,本文给出的是CVPR 2018的文章《AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks》。它是StackGAN++的后续工作。论文地址:https://arxiv.org/abs/1711.10485源码地址:https:...

2018-08-02 22:08:37 11936

原创 text to image(五):《StackGAN++》

 继续介绍文本生成图像的相关工作,本文给出的是ICCV 2017 的文章《StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks》        论文地址:https://arxiv.org/abs/1710.10916        源码地址:https://github.c...

2018-07-31 21:45:10 6144

原创 text to image(四):《Stackgan》

        继续介绍文本生成图像的相关工作,本文给出的是2016年12月10日发表于 arXiv 的文章《Stackgan: Text to photo-realistic image synthesis with stacked generative adversarial networks》        论文地址:https://arxiv.org/pdf/1612.03242v1....

2018-07-30 21:18:03 7255 7

原创 text to image(八):《Image Generation from Scene Graphs》

最近在翻阅文本生成图像的相关工作,目前比较新的有突破性的工作是李飞飞工作团队18年cvpr发表的《Image Generation from Scene Graphs》 。       论文地址:https://arxiv.org/abs/1804.01622       源码地址: https://github.com/google/sg2im       这篇主要就是介绍该论文的工...

2018-07-27 22:57:35 6319 2

原创 经典网络解读系列(四):mask rcnn

mask rcnn用于实现实例分割实例分割是物体检测+语义分割的综合体。相对物体检测的边界框,实例分割可精确到物体的边缘;相对语义分割,实例分割可以标注出图上同一物体的不同个体(羊1,羊2,羊3...)网络结构:  其中 黑色部分为原来的 Faster-RCNN,红色部分为在 Faster网络上的修改:1)将 Roi Pooling 层替换成了 RoiAlign;...

2018-06-19 20:32:57 577

原创 经典网络解读系列(三):faster rcnn

大部分博客内容来自:https://zhuanlan.zhihu.com/p/31426458   讲的非常详细,强烈推荐faster rcnn是fast rcnn的改进版本,主要贡献是改进了候选区域的选取方式,由原本的ss(select search)转换为RPN网络,这样所有的计算都在GPU上进行,和Fast R-CNN的卷积网络一起复用,大大缩短了计算时间。同时mAP又上了一个台阶。...

2018-06-19 16:24:03 764

原创 经典网络解读系列(二):fast rcnn

部分博客内容引用:https://alvinzhu.xyz/2017/10/10/fast-r-cnn/https://blog.csdn.net/shenxiaolu1984/article/details/51036677  首先讲一下前作rcnn的缺点,有关rcnn,可以参考博客https://blog.csdn.net/zlrai5895/article/details...

2018-06-19 10:43:02 264

原创 经典网络解读系列(一):RegionProposal+CNN (rcnn)

论文来自《Rich feature hierarchies for accurate object detection and semantic segmentation》目标:目标检测 模型结构:1、使用select search对每张图像产生1k-2k个候选区域(这一步和目标类别无关)2、对候选区域resize到统一尺寸。(227*227)这里resize的方法有三种:...

2018-06-18 16:38:16 2905

转载 非极大值抑制(Non-Maximum Suppression,NMS)

转自https://www.cnblogs.com/makefile/p/nms.html 概述非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum ...

2018-06-18 10:57:18 996

原创 经典网络复现系列(三):GAN

1、简述最近读了Gnerative Adversarial Nets(GAN)的论文,有种无间道的感觉。其他话不说先放张图。训练网络的时候,需要大量的样本,样本数量的不足会导致网络训练的效果不好。那么我们可不可以自己生成一些样本?这时候GAN就派上了用场。GAN蕴含了两个网络博弈的思想。它由两个网络结构组成,即生成器(generator)和鉴定器(discriminator)。生成器负责产生...

2018-06-11 10:59:23 4549

原创 经典网络复现系列(二):SegNet

1、论文简要和FCN结构相似,只不过编码器使用了VGG16的13个卷积层,在池化过程中,保存了最大池化的索引。上采样到恢复到原本的位置,其他位置的元素为0,然后进行反卷积。这样做的好处在于1)改善边界描述2)减少end2end的训练参数(与FCN相比节约内存)3)这样的形式可用于多种encoder-decoder架构有工作将RNN、条件随机场(CRF)引入配合decoder做预测,有助...

2018-06-05 11:42:14 6233 9

转载 tensorflow学习(四):tensorflow中batch normalization的用法

网上找了下tensorflow中使用batch normalization的博客,发现写的都不是很好,在此总结下:1.原理公式如下:y=γ(x-μ)/σ+β其中x是输入,y是输出,μ是均值,σ是方差,γ和β是缩放(scale)、偏移(offset)系数。一般来讲,这些参数都是基于channel来做的,比如输入x是一个16*32*32*128(NWHC格式)的feature ma...

2018-06-02 21:19:32 616

转载 TensorFlow学习(三):tf.scatter_nd函数

 scatter_nd(indices,updates,shape,name=None)根据indices将updates散布到新的(初始为零)张量。根据索引对给定shape的零张量中的单个值或切片应用稀疏updates来创建新的张量。此运算符是tf.gather_nd运算符的反函数,它从给定的张量中提取值或切片。警告:更新应用的顺序是非确定性的,所以如果indices包含重复项...

2018-06-02 20:24:55 24503 9

原创 python学习(三):格式化输出‘’.format的用法

 print('{}/{}'.format('a', 'b'))

2018-05-29 13:24:46 2175

原创 经典网络复现系列(一):FCN

1、FCN网络架构FCN的前半段与VGG19架构相同,直接使用了VGG19预训练好的权重。前半段的具体架构如下:layers = (        'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',        'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',     ...

2018-05-27 22:50:05 7843 2

原创 tensorflow学习(二):高效读取数据(tfrecord)

#!/usr/bin/env python3# -*- coding: utf-8 -*-"""Created on Mon May 28 15:29:51 2018"""import tensorflow as tfimport numpy as npfrom PIL import Imageimport osfrom scipy import miscimport ti...

2018-05-21 16:26:05 669

原创 tensorflow学习(一):关于tensorflow交叉熵损失函数的一些理解

1、tf.nn.softmax_cross_entropy_with_logits(_sentinel=None,labels=None, logits=None, dim=-1, name=None)sentinel 一般不用  labels 和logits形状相同 都是[batch_size,num_classes]其中labels可以是one-hot的形式,也可以是和为1的概率分布。...

2018-05-20 14:50:50 2735

原创 python 学习(二):多重字典以numpy形式存储和读出

如下所示是一个 二重字典a={'d2': {0: array([[ 0.00871335, -0.00310053,  0.00816491, ...,  0.00694641,         0.00464299,  0.01580841],       [ 0.00882073, -0.00029377, -0.00521681, ...,  0.0017954 ,        ...

2018-04-19 19:18:19 10081 1

原创 python学习(一):argparse模块

argparse模块的作用是用于解析命令行参数。例如:python parseTest.py --user 'we'二、使用步骤:import argparseparser = argparse.ArgumentParser()parser.add_argument('--input')args=parser.parse_args()x=args.input...

2018-03-03 21:13:56 224

原创 冈萨雷斯《数字图像处理matlab版》(八):表示与描述

连接分量,连接集,孔洞,前景点,背景点。 1、提取区域以及边界的函数:bwlabel函数可以找出一幅图像中所有的连接分量(区域)[L,num]=bwlabel(f,conn)f是输入图像,conn指定期望的连接性(4连接或8连接,后者是默认值)num是所找到的连接分量数,L是标记矩阵,它给每个连接分量分配区间[1,num]内的一个唯一整数。g=bwperim(f,con

2018-01-14 22:34:17 3186

原创 冈萨雷斯《数字图像处理matlab版》(七):图像分割

图像分割基于两个性质: 不连续性和相似性。一种是基于灰度的突变(如边缘),另一种是分为相似的区域。3*3模板在某一点的响应:R= 。 是与之对应的图像像素的灰度。点检测: -1-1 -1    这是点检测的模板w,中心是孤立点时响应最强。若-1  8 -1   响应大于某一阈值,则称此处有孤立点。在恒定灰-1-1 -1    度区域中,响应为零。g=abs(imfilt

2018-01-14 22:33:27 4708

原创 冈萨雷斯《数字图像处理matlab版》(六):图像压缩

图像压缩系统由编码器和解码器构成。 和 分别代表原始图像和编码后的图像单元数目。压缩比: 。附录中的imratio(f1,f2) 计算两幅图像文件比特数的比率。 要查看压缩后(编码后)的图像,必须把图像送入解码器中。解码后的图像为 (x,y)  如果与原图像相同,叫做无损压缩。,否则叫做有损压缩。误差e(x,y)=f(x,y)- (x,y)。  与f的均方根误差是 所有像素误差的平

2018-01-14 22:32:37 1205

原创 冈萨雷斯《数字图像处理matlab版》(五):彩色图像处理

一幅RGB图像是M*N*3的彩色像素数组。RGB图像可以看作是三幅灰度图的叠加。RGB图像的类由分量图像的类决定。rgb_iamge=cat(3,fr,fg,fb)   顺序不能颠倒。rgb_iamge=cat(dim,fr,fg,fb)dim=1三个数组垂直排列。    dim=2 三个数组水平排列。dim=3在第三个方向上堆叠。fr=rgb_image(:,:,1);  提

2018-01-14 22:31:58 1747

原创 冈萨雷斯《数字图像处理matlab版》(四):图像复原与重建

退化过程可模拟为一个退化函数和加性噪声项。g(x,y)=H[f(x,y)]+n(x,y)G(u,v)=H(u,v)*f(u,v)+N(u,v)   做卷积噪声模型: g=imnoise(f,type,parameters)g=imnoise(f,'gaussian',m,var)将均值m,方差为var的高斯噪声加到图像f上,默认值是均值m为0,方差var为0.01的噪声。g=imn

2018-01-14 22:31:00 4169 1

原创 冈萨雷斯《数字图像处理matlab版》(三):频率域滤波

滤波适用情形:去除目标和背景中的噪声。  几种边缘检测微分算子滤波器的比较:查看本文件夹相关文档F=fft2(f)    图像f的傅里叶变换 输入为M*N 输出还是M*N。此时,傅里叶变换的原点在左上角。(F(u,v)关于原点左右向下对称)f=ifft2(F)    反傅里叶变换  注意 f会被变成double类。F=ff2(f,P,Q)  对输入图像补充所需的点,

2018-01-14 22:30:12 1164

原创 冈萨雷斯《数字图像处理matlab版》(二):灰度变换与空间滤波

灰度变换函数:1、I = mat2gray(A, [amin amax])将图像矩阵A中介于amin和amax的数据归一化处理, 其余小于amin的元素都变为0, 大于amax的元素都变为1。I = mat2gray(A)将图像矩阵A归一化为图像矩阵I,归一化后矩阵中每个元素的值都在0到1范围内(包括0和1)。其中0表示黑色,1表示白色。   2、g=imadj

2018-01-14 22:29:11 1486

原创 冈萨雷斯《数字图像处理matlab版》(一):绪言

数字图像,是以二维数组形式表示的图像,其数字单元为像素,是由模拟图像取样(坐标数字化)和量化(幅值数字化)后得到的。图像读取:f=imread(’文件名’)图像f显示:imshow(f)保存并输出第二幅图像g: figure,imshow(g)图像f写入目录:imwrite(f,’文件名’)类uint8和logical 类多用于图像处理B=logical(A) 创建逻辑数组

2018-01-14 22:26:29 1374

转载 条件随机场CRF

http://blog.csdn.net/xueyingxue001/article/details/51498968 声明:         1,本篇为个人对《2012.李航.统计学习方法.pdf》的学习总结,不得用作商用,欢迎转载,但请注明出处(即:本帖地址)。         2,由于本人在学习初始时有很多数学知识都已忘记,所以为了弄懂其中的内容查阅了很多资料,所以里面应该会有引用其...

2017-12-16 19:37:27 456

原创 线性SVM与非线性SVM

   所谓线性SVM与非线性SVM是指其选用的核类型。    用于分类问题时,SVM可供选择的参数并不多,惩罚参数C,核函数及其参数选择。对于一个应用,是选择线性核,还是多项式核,还是高斯核?还是有一些规则的。    什么时候选择线性的SVM核: 预测函数简单f(x) = w’*x+b,分类速度快。对于类别多的问题,分类速度的确需要考虑到,线性分类器的w可以事先计算出来,而非线性分类...

2017-12-10 10:57:18 6356 1

原创 什么是迁移学习

      假如我们有两个相似的数据域,source和target,source有标记,target无标记。我们希望可以节省标记的时间,利用在sorce上训练的模型训练出target上的模型。      因此,迁移学习的前提是source和target相似度足够高。           迁移学习主要分为四种:(1)基于样本的迁移学习 通过对源域中有标签样本的加权完成知识迁移(2...

2017-12-05 12:59:11 1401

转载 CNN中感受野的计算

感受野(receptive field)是怎样一个东西呢,从CNN可视化的角度来讲,就是输出featuremap某个节点的响应对应的输入图像的区域就是感受野。比如我们第一层是一个3*3的卷积核,那么我们经过这个卷积核得到的featuremap中的每个节点都源自这个3*3的卷积核与原图像中3*3的区域做卷积,那么我们就称这个featuremap的节点感受野大小为3*3如果再经过pooling

2017-12-01 22:43:23 347

转载 支持向量机(SVM)

   支持向量机通俗导论(理解SVM的三层境界) 作者:July、pluskid ;致谢:白石、JerryLead出处:结构之法算法之道blog。 前言    动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已...

2017-11-26 13:44:36 658

转载 决策树算法(有监督学习算法)

一、决策树基础    决策树(Decision Tree)算法是根据数据的属性采用树状结构建立决策模型,这个模型可以高效的对未知的数据进行分类。决策树模型常常用来解决分类和回归问题。如今决策树是一种简单但是广泛使用的分类器。常见的算法包括 CART (Classification And Regression Tree)、ID3、C4.5、随机森林 (Random Forest) 等。

2017-11-24 11:26:19 8322 1

原创 利用python进行数据分析(八):时间序列

时间的数据分为三种: 时间戳,即特定的时刻 固定日期 时间间隔首先from datetime import datetimefrom datetime import timedeltafrom dateutil.parser import parse(1)日期和时间数据类型datetime.now() #可以通过now属性来调取年月日delta=datetime(2011,1,7)-d

2017-11-23 22:50:23 364

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除