月半rai
码龄8年
关注
提问 私信
  • 博客:316,271
    社区:1
    316,272
    总访问量
  • 71
    原创
  • 1,215,986
    排名
  • 286
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:天津市
  • 加入CSDN时间: 2016-12-16
博客简介:

zlrai5895的博客

查看详细资料
个人成就
  • 获得122次点赞
  • 内容获得53次评论
  • 获得567次收藏
创作历程
  • 8篇
    2019年
  • 65篇
    2018年
  • 16篇
    2017年
成就勋章
TA的专栏
  • 图像处理
    11篇
  • 深度学习
    27篇
  • python编程
    17篇
  • 机器学习
    9篇
  • ubuntu
    1篇
  • shu'xue
  • 数学
  • image caption
    20篇
  • tensorflow
    7篇
  • text to image
    10篇
  • pytorch
    2篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习pytorchnlp
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

image caption笔记(十):一些实现过程中的小细节

1、beam search 一方面可以提升指标,另一方面也可以解决生成的句子不通顺的问题。因此,不管是在训练测试的过程中都要开beamsearch ,对提高指标有帮助。还有就是,如果训练的时候 beam size设置为1,而只是在测试的时候使用beamsearch,原本好的模型可能会变得还不如原本差的模型。也就是,beam size=1下的好的模型 到了beam size=5下未必还能继续好。2...
原创
发布博客 2019.05.09 ·
1149 阅读 ·
1 点赞 ·
1 评论 ·
2 收藏

PyTorch中使用指定的GPU

转载自http://www.cnblogs.com/darkknightzh/p/6836568.htmlPyTorch默认使用从0开始的GPU,如果GPU0正在运行程序,需要指定其他GPU。有如下两种方法来指定需要使用的GPU。1. 类似tensorflow指定GPU的方式,使用CUDA_VISIBLE_DEVICES。1.1 直接终端中设定:CUDA_VISIB...
转载
发布博客 2019.04.28 ·
591 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

image caption笔记(九):《Unsupervised Image Captioning》

无监督的caption文章使用一个图像数据集(MSCOCO)和一个文本语料库(从Web上抓取的200多万个句子组成图像描述语料库) 来做无监督caption。没有任何配对集合。1、模型结构:提出的图像字幕模型由图像编码器(没有用VGG 和resnet,改用了Inception v4),句子生成器和句子鉴别器组成。训练目标包括了三部分:(1)使用语料库来训练一个CGAN网...
原创
发布博客 2019.04.01 ·
2382 阅读 ·
2 点赞 ·
1 评论 ·
10 收藏

LSTM反向传播算法

https://zybuluo.com/hanbingtao/note/581764
转载
发布博客 2019.03.30 ·
1110 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

循环神经网络RNN 梯度推导(BPTT)

https://zhuanlan.zhihu.com/p/32930648https://zhuanlan.zhihu.com/p/26892413
转载
发布博客 2019.03.29 ·
1386 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

RNN梯度消失与梯度爆炸的原因

• 关于RNN结构•关于RNN前向传播•关于RNN反向传播• 解决方法1. 关于RNN结构循环神经网络RNN(Recurrent Neural Network)是用于处理序列数据的一种神经网络,已经在自然语言处理中被广泛应用。下图为经典RNN结构:RNN结构2. 关于RNN前向传播RNN前向传导公式:其中: St : t 时刻...
转载
发布博客 2019.03.29 ·
1946 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

scikit-learn随机森林调参小结

    在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结。本文就从实践的角度对RF做一个总结。重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点。1. scikit-learn随机森林类库概述    在scikit-learn中,RF的分类类是RandomForestClassifier...
转载
发布博客 2019.03.05 ·
307 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器翻译的进化过程以及在image caption上的迁移

1、最早的时候,机器翻译使用基于lstm或者rnn的eq2seq模型。         整个模型分为解码和编码两个过程,将输入序列X进行编码得到向量C,然后对C进行解码得到输出序列Y。其中,X、Y均由各自的单词序列组成(X,Y是两种不同的语言):X = (x1,x2,...,xm)Y = (y1,y2,...,yn)Encoder:是将输入序列通过非线性变换编码成一个指定长...
原创
发布博客 2019.01.01 ·
1268 阅读 ·
1 点赞 ·
3 评论 ·
3 收藏

机器翻译的进化过程以及在image caption上的迁移

1、最早的时候,机器翻译使用基于lstm或者rnn的eq2seq模型。         整个模型分为解码和编码两个过程,将输入序列X进行编码得到向量C,然后对C进行解码得到输出序列Y。其中,X、Y均由各自的单词序列组成(X,Y是两种不同的语言):X = (x1,x2,...,xm)Y = (y1,y2,...,yn)Encoder:是将输入序列通过非线性变换编码成一个指定长...
原创
发布博客 2019.01.01 ·
1268 阅读 ·
1 点赞 ·
3 评论 ·
3 收藏

batch_normalization和layer normalization的区别

直观的理解,batch vs layer normalization。batch是“竖”着来的,各个维度做归一化,所以与batch size有关系。layer是“横”着来的,对一个样本,不同的神经元neuron间做归一化。 给一个批次的数据[b,n,w,h]   b是batch_size,n是特征图数目,w、h是宽和高。batch_normalization是针对所有的样本,对...
原创
发布博客 2018.12.31 ·
3540 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

独立同分布

在概率论与统计学中,独立同分布(英语:Independent and identically distributed,缩写为IID)是指一组随机变量中每个变量的概率分布都相同,且这些随机变量互相独立。...
原创
发布博客 2018.12.31 ·
2881 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

Batch Normalization

原文地址:http://blog.csdn.net/hjimce/article/details/50866313作者:hjimce一、背景意义本篇博文主要讲解2015年深度学习领域,非常值得学习的一篇文献:《Batch Normalization: Accelerating Deep Network Training by  Reducing Internal Covariate S...
转载
发布博客 2018.12.31 ·
197 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

python学习笔记(九):super

 在类的继承中,如果重定义某个方法,该方法会覆盖父类的同名方法,但有时,我们希望能同时实现父类的功能,这时,我们就需要调用父类的方法了,可通过使用 super 来实现,比如:class Animal(object): def __init__(self, name): self.name = name def greet(self): pr...
原创
发布博客 2018.12.14 ·
183 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

弱监督学习

 通常来说,弱监督可以分为三类。第一类是不完全监督(incomplete supervision),即,只有训练集的一个(通常很小的)子集是有标签的,其他数据则没有标签。这种情况发生在各类任务中。例如,在图像分类任务中,真值标签由人类标注者给出的。从互联网上获取巨量图片很容易,然而考虑到标记的人工成本,只有一个小子集的图像能够被标注。第二类是不确切监督(inexact supervision)...
转载
发布博客 2018.12.13 ·
2569 阅读 ·
0 点赞 ·
0 评论 ·
8 收藏

计算语义相似性(DSSM)的三种方法

出处: http://blog.csdn.net/u013074302/article/details/76422551导语在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下A句子和B句子的语义相似度等等。本文通过介绍DSSM、CNN-DSSM、LSTM-DSSM等深度学习模型在计算语义相似度上的应...
转载
发布博客 2018.12.13 ·
1888 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

多示例学习以及对应的神经网络算法

1、多示例学习的概念简单介绍下多示例学习。多示例学习实际是一种半监督算法。考虑这样一种训练数据:我们有很多个数据包(bag),每个数据包中有很多个示例(instance)。我们只有对bag的正负类标记,而没有对instance的正负例标记。当一个bag被标记为正时,这个包里一定有一个instance是正类,但也有可能其他instance是负类,当一个bag被标记为负类时,它里面的所有insta...
原创
发布博客 2018.12.13 ·
4426 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

多示例学习以及对应的神经网络算法

1、多示例学习的概念简单介绍下多示例学习。多示例学习实际是一种半监督算法。考虑这样一种训练数据:我们有很多个数据包(bag),每个数据包中有很多个示例(instance)。我们只有对bag的正负类标记,而没有对instance的正负例标记。当一个bag被标记为正时,这个包里一定有一个instance是正类,但也有可能其他instance是负类,当一个bag被标记为负类时,它里面的所有insta...
原创
发布博客 2018.12.13 ·
4426 阅读 ·
3 点赞 ·
0 评论 ·
13 收藏

COCO数据集介绍

转载自:https://zhuanlan.zhihu.com/p/29393415COCO的 全称是Common Objects in COntext,是微软团队提供的一个可以用来进行图像识别的数据集。MS COCO数据集中的图像分为训练、验证和测试集。COCO通过在Flickr上搜索80个对象类别和各种场景类型来收集图像,其使用了亚马逊的Mechanical Turk(AMT)。比如...
转载
发布博客 2018.12.13 ·
13118 阅读 ·
1 点赞 ·
2 评论 ·
27 收藏

opencv学习(一):目标检测中怎么将画好框的图片保存下来

采用cv读图-->画框-->存图import cv2img1=cv2.imread('./555_F0ed5ee7e728f4b94a22fe30e93b1009a.JPG')img2=cv2.rectangle(img1,(52,52),(200,200),(0,255,0),3) 首先介绍下cv2.boundingRect(img)这个函数这个函数很...
原创
发布博客 2018.12.13 ·
2780 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

opencv学习(一):目标检测中怎么将画好框的图片保存下来

采用cv读图-->画框-->存图import cv2img1=cv2.imread('./555_F0ed5ee7e728f4b94a22fe30e93b1009a.JPG')img2=cv2.rectangle(img1,(52,52),(200,200),(0,255,0),3) 首先介绍下cv2.boundingRect(img)这个函数这个函数很...
原创
发布博客 2018.12.13 ·
2780 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏
加载更多