十七、Spark Streaming数据源

本文介绍了Spark Streaming如何处理文件流数据源,包括不使用Receiver读取文件的机制,以及通过`streamingContext.fileStream`和`streamingContext.textFileStream`方法创建DStream的演示。在示例中,程序首先统计了words.txt的词频,然后统计了test.txt的词频,展示了文件流的实时处理能力。
摘要由CSDN通过智能技术生成

一、基本数据源

StreamingContext API中直接提供了对一些数据源的支持,例如文件系统、Socket连接、RDD队列流等,此类数据源称为基本数据源。

(一)文件流

1、读取文件流概述

对于从任何与HDFS API(HDFS、S3、NFS等)兼容的文件系统上的文件中读取数据,创建DStream的方式:streamingContext.fileStreamKeyClass, ValueClass, InputFormatClass,Spark Streaming将监视目录dataDirectory并处理在该目录中的所有文件。
对于简单的文本文件,创建DStream的方式:streamingContext.textFileStream(dataDirectory)
需要注意的是,文件流不需要运行Receiver,因此不需要为接收文件数据分配CPU内核。

2、读取文件流演示

在HDFS上创建监测目录/stream
在这里插入图片描述
待会儿需要将/park目录里的words.txt与test.txt文件拷到监测目录/stream
在这里插入图片描述

创建Maven项目 - SparkStreamingDataSourceDemo
在这里插入图片描述
将java目录改成scala目录
在这里插入图片描述
创建日志属性文件 - log4j.properties在这里插入图片描述
log4j.rootLogger=ERROR, stdout, logfile
log4j.appender.stdout=or

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值