random VS numpy.random

1 给随机生成器设置seed的目的是每次运行程序得到的随机数的值相同,这样方便测试。numpy.random.seed()不是线程安全的,如果程序中有多个线程最好使用numpy.random.RandomState实例对象来创建或者使用random.seed()来设置相同的随机数种子。

使用RandomState实例来生成随机数数组

from numpy.random import RandomState
r = RandomState(1234567890)
a = r.randint(1, 10,size=10)
r = RandomState(1234567890)
b = r.randint(1, 10, size=10)
r = RandomState(1234567890)
c = r.randint(1, 10, size=10)
r = RandomState(1234567890)
d = r.randint(1, 10, size=10)
print a, '\n', b, '\n', c, '\n', d
[ 1  1 -1  0  0 -1  1  0 -1 -1] 
[ 1  1 -1  0  0 -1  1  0 -1 -1] 
[ 1  1 -1  0  0 -1  1  0 -1 -1] 
[ 1  1 -1  0  0 -1  1  0 -1 -1]

使用Python的random来生成随机数

import random
random.seed(1234567890)
a = random.sample(range(10),5)  # 从range(10)=[0,1,2,3,4,5,6,7,8,9]中随机抽样5个数
random.seed(1234567890)
b = random.sample(range(10),5)
random.seed(1234567890)
c = random.sample(range(10),5)
random.seed(1234567890)
d = random.sample(range(10),5)
print a, '\n', b, '\n', c, '\n', d
[9, 5, 3, 8, 6] 
[9, 5, 3, 8, 6] 
[9, 5, 3, 8, 6] 
[9, 5, 3, 8, 6]

2 numpy.random库比Python内置的random库有更多的方法,比如生成随机数组numpy.random.randint(low[, high, size, dtype])。如果不进行科学计算,使用random.randint(a,b)就足够了。

  • 0
    点赞
  • 3
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:大白 设计师:CSDN官方博客 返回首页
评论

打赏作者

小丫头い

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值