七价铬
码龄6年
关注
提问 私信
  • 博客:4,045
    4,045
    总访问量
  • 2
    原创
  • 2,051,971
    排名
  • 2
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2019-05-28
博客简介:

zmerengues的博客

查看详细资料
个人成就
  • 获得3次点赞
  • 内容获得0次评论
  • 获得9次收藏
创作历程
  • 3篇
    2020年
成就勋章
TA的专栏
  • learning diary
  • paper reading
    2篇
  • learning
    1篇
兴趣领域 设置
  • 人工智能
    opencv计算机视觉机器学习深度学习神经网络tensorflowpytorch图像处理
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

342人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PhyDNet:Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction

PhyDNet:Disentangling Physical Dynamics from Unknown Factors for Unsupervised Video Prediction参考博客来源: link主要思想是试图用深度网络构建物理约束模型,方法是用卷积模拟偏导,用moment loss作监督,学到物理信息,从而对已有的网络(文中使用ConvLSTM)进行信息补充。如图,右边为已有深度网络可以捕捉到的信息,本文试图使用深度网络通过偏微分方程来建模先验物理知识,即左边的信息。最后将物理信息
转载
发布博客 2020.09.03 ·
3267 阅读 ·
3 点赞 ·
0 评论 ·
6 收藏

NestedVAE: Isolating Common Factors via Weak Supervision.

NestedVAE: Isolating Common Factors via Weak Supervision.摘要  公正无偏的机器学习十分重要,但数据中的偏差biases很可能被模型学到,导致后续决策过程有偏差。作者确定了减少偏差的任务 与 分离domain之间共有因子的联系,同时鼓励域特定的不变性。   本文通过深度隐变量模型结合信息瓶颈理论,来分离common factors,适用于跨域的自然配对数据而不需要额外监管的场景。  Nested VAE试图用图像的潜在表示去重建成对的另一
原创
发布博客 2020.08.11 ·
312 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

postgreSQL 个人学习笔记整理

postgreSQL学习笔记
原创
发布博客 2020.07.03 ·
456 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏