
K折交叉验证的整个过程
K折交叉验证是一种强大且灵活的模型评估方法,它充分利用了数据集,减少了过拟合和欠拟合的风险,并提供了对模型性能的稳健评估。综上所述,K折交叉验证是一个系统而细致的过程,涉及数据集的划分、模型的训练和验证、性能指标的计算和平均等多个步骤。通过这个过程,我们可以更准确地评估模型的性能,并选择最优的模型和参数组合来优化模型的泛化能力。然后,在独立的测试集上评估模型的性能,以确保其在实际应用中的表现。在实际应用中,需要根据数据集的大小和模型的复杂度来选择合适的K值以平衡计算效率和评估准确性。






